Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.
Aristolochic acid (AA), a natural product of Aristolochia plants found in herbal remedies and health supplements, is a group 1 carcinogen that can cause nephrotoxicity and upper urinary tract urothelial cell carcinoma (UTUC). Whole-genome and exome analysis of nine AA-associated UTUCs revealed a strikingly high somatic mutation rate (150 mutations/Mb), exceeding smoking-associated lung cancer (8 mutations/Mb) and ultraviolet radiation-associated melanoma (111 mutations/Mb). The AA-UTUC mutational signature was characterized by A:T to T:A transversions at the sequence motif A[C|T]AGG, located primarily on nontranscribed strands. AA-induced mutations were also significantly enriched at splice sites, suggesting a role for splice-site mutations in UTUC pathogenesis. RNA sequencing of AA-UTUC confirmed a general up-regulation of nonsense-mediated decay machinery components and aberrant splicing events associated with splice-site mutations. We observed a high frequency of somatic mutations in chromatin modifiers, particularly KDM6A, in AA-UTUC, demonstrated the sufficiency of AA to induce renal dysplasia in mice, and reproduced the AA mutational signature in experimentally treated human renal tubular cells. Finally, exploring other malignancies that were not known to be associated with AA, we screened 93 hepatocellular carcinoma genomes/exomes and identified AA-like mutational signatures in 11. Our study highlights an unusual genome-wide AA mutational signature and the potential use of mutation signatures as "molecular fingerprints" for interrogating high-throughput cancer genome data to infer previous carcinogen exposures.
Many traditional pharmacopeias include and related plants, which contain nephrotoxins and mutagens in the form of aristolochic acids and similar compounds (collectively, AA). AA is implicated in multiple cancer types, sometimes with very high mutational burdens, especially in upper tract urothelial cancers (UTUCs). AA-associated kidney failure and UTUCs are prevalent in Taiwan, but AA's role in hepatocellular carcinomas (HCCs) there remains unexplored. Therefore, we sequenced the whole exomes of 98 HCCs from two hospitals in Taiwan and found that 78% showed the distinctive mutational signature of AA exposure, accounting for most of the nonsilent mutations in known cancer driver genes. We then searched for the AA signature in 1400 HCCs from diverse geographic regions. Consistent with exposure through known herbal medicines, 47% of Chinese HCCs showed the signature, albeit with lower mutation loads than in Taiwan. In addition, 29% of HCCs from Southeast Asia showed the signature. The AA signature was also detected in 13 and 2.7% of HCCs from Korea and Japan as well as in 4.8 and 1.7% of HCCs from North America and Europe, respectively, excluding one U.S. hospital where 22% of 87 "Asian" HCCs had the signature. Thus, AA exposure is geographically widespread. Asia, especially Taiwan, appears to be much more extensively affected, which is consistent with other evidence of patterns of AA exposure. We propose that additional measures aimed at primary prevention through avoidance of AA exposure and investigation of possible approaches to secondary prevention are warranted.
The molecular pathogenesis of natural killer/T-cell lymphoma (NKTCL) is not well understood. We conducted whole-exome sequencing and identifi ed Janus kinase 3 (JAK3) somatic-activating mutations (A572V and A573V) in 2 of 4 patients with NKTCLs. Further validation of the prevalence of JAK3 mutations was determined by Sanger sequencing and high-resolution melt (HRM) analysis in an additional 61 cases. In total, 23 of 65 (35.4%) cases harbored JAK3 mutations. Functional characterization of the JAK3 mutations support its involvement in cytokine-independent JAK/ STAT constitutive activation leading to increased cell growth. Moreover, treatment of both JAK3-mutant and wild-type NKTCL cell lines with a novel pan-JAK inhibitor, CP-690550, resulted in dose-dependent reduction of phosphorylated STAT5, reduced cell viability, and increased apoptosis. Hence, targeting the deregulated JAK/STAT pathway could be a promising therapy for patients with NKTCLs. SIGNIFICANCE:Gene mutations causing NKTCL have not been fully identifi ed. Through exome sequencing, we identifi ed activating mutations of JAK3 that may play a signifi cant role in the pathogenesis of NKTCLs. Our fi ndings have important implications for the management of patients with NKTCLs.Cancer Discov; 2(7); 591-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.