Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature 1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium 2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses 3-15 , enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer. Somatic mutations in cancer genomes are caused by mutational processes of both exogenous and endogenous origin that operate during the cell lineage between the fertilized egg and the cancer cell 16. Each mutational process may involve components of DNA damage or modification, DNA repair and DNA replication (which may be normal or abnormal), and generates a characteristic mutational signature that potentially includes base substitutions, small insertions and deletions (indels), genome rearrangements and chromosome copy-number changes 1. The mutations in an individual cancer genome may have been generated by multiple mutational processes, and thus incorporate multiple superimposed mutational signatures. Therefore, to systematically characterize the mutational processes that contribute to cancer, mathematical methods have previously been used to decipher mutational signatures from somatic mutation catalogues, estimate the number of mutations that are attributable to each signature in individual samples and annotate each mutation class in each tumour with the probability that it arose from each signature 6,9,17-27. Previous studies of multiple types of cancer have identified more than 30 single-base substitution (SBS) signatures, some of knownbut many of unknown-aetiologies, some ubiquitous and others rare, some part of normal cell biology and others associated with abnormal exposures or neoplastic progression 3-5,7-15. Genome rearrangement signatures have also previously been described 11,25,28-30. However, the analysis of other classes of mutation has been relatively limited 3,11,31-33 .
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
40 Somatic mutations in cancer genomes are caused by multiple mutational processes each of 41 which generates a characteristic mutational signature. Using 84,729,690 somatic mutations 42 from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer 43 types we characterised 49 single base substitution, 11 doublet base substitution, four 44 clustered base substitution, and 17 small insertion and deletion mutational signatures. The 45 substantial dataset size compared to previous analyses enabled discovery of new signatures, 46 separation of overlapping signatures and decomposition of signatures into components that 47 may represent associated, but distinct, DNA damage, repair and/or replication mechanisms. 48 Estimation of the contribution of each signature to the mutational catalogues of individual 49 cancer genomes revealed associations with exogenous and endogenous exposures and 50 defective DNA maintenance processes. However, many signatures are of unknown cause. 51 This analysis provides a systematic perspective on the repertoire of mutational processes 52 contributing to the development of human cancer including a comprehensive reference set 53 of mutational signatures in human cancer. 54 55 56
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters – Fluke-Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3′UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores – mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.
Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.