A new environmental friendly flame retardant manganese phytate (MnPa) was prepared by a direct precipitation method and the polyurethane foam (PUF) modified with MnPa was obtained by a one-step all-water foaming method. The thermal stability and combustion performance of the MnPa-modified PUF (MnPUF) were investigated by using thermogravimetric (TG), thermal decomposition kinetics, smoke density characterization, limiting oxygen index (LOI) and UL-94 horizontal combustion test. The results indicated that the addition of MnPa significantly improved the thermal stability and combustion performance of the modified PUF. On the basis of the thermogravimetric analysis, Flynn-Wall-Ozawa method, Kissinger method and Coats Redfern method, it could be concluded that PUF with 7.5 wt% MnPa (MnPUF3) had the highest activation energy and the best thermal stability. Smoke density analysis, LOI and horizontal combustion analysis also showed that the addition of MnPa was positively correlated with smoke suppression, LOI value and burning time. The current research results can provide a reference for the subsequent flame retardant modification of PUF.
Rigid polyurethane foam (RPUF) modified by self-made manganese phytate (MnPa) and expandable graphite (EG) has been prepared successfully. The thermal stability and combustion behavior of the modified RPUFs (MEPUF) have been studied using the thermogravimetric analysis, pyrolysis kinetics analysis, smoke density analysis, limiting oxygen index (LOI), and UL-94 level test. When compared to MEPUF1 (MnPa/EG = 3/1), MEPUF2 (MnPa/EG = 1/1) had a 9.1 C higher initial decomposition temperature and had a greater activation energy. Additionally, the smoke density experiment demonstrated that the light transmittance of MEPUF2 increased by 5.1% compared with MEPUF1 in 0-70s and the LOI of MEPUF2 reached 23%. The current investigation indicated that MEPUF2 had better thermal stability and flame retardancy.
Rigid polyurethane foams (RPUFs) were synthesized with chicken feather protein using the “one-step method” of all-water foaming. Thermogravimetry, pyrolysis kinetics analysis, Cone calorimetry and smoke density (Ds) were used to investigate the effects of chicken feather protein on thermal stability and combustion performance of RPUFs. The results showed that the modified RPUFs with 2.5 wt% chicken feather protein (RPUF-CF1) had the lowest mass loss, the highest integrated program pyrolysis temperature, the highest activation energy, the lowest Ds (13.3), the highest light transmittance (79.3 %), the lowest heat release rate (22.0 kW/m2 and 30.6 kW/m2) and total heat release (2.4 MJ/m2 and 2.8 MJ/m2), which indicated that RPUF-CF1 had better thermal stability and combustion performance. The current research results provide a useful reference for the preparation of RPUFs with good thermal stability by bio-based modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.