Cathepsins have been proposed as biomarkers of chemical exposure in the zebrafish embryo model but it is unclear whether they can also be used to detect sublethal stress. The present study evaluates three cathepsin types as candidate biomarkers in zebrafish embryos. In addition to other functions, cathepsins are also involved in yolk lysosomal processes for the internal nutrition of embryos of oviparous animals until external feeding starts. The baseline enzyme activity of cathepsin types H, C and L during the embryonic development of zebrafish in the first 96 h post fertilisation was studied. Secondly, the effect of leupeptin, a known cathepsin inhibitor, and four embryotoxic xenobiotic compounds with different modes of action (phenanthrene—baseline toxicity; rotenone—an inhibitor of electron transport chain in mitochondria; DNOC (Dinitro-ortho-cresol)—an inhibitor of ATP synthesis; and tebuconazole—a sterol biosynthesis inhibitor) on in vivo cathepsin H, C and L total activities have been tested. The positive control leupeptin showed effects on cathepsin L at a 20-fold lower concentration compared to the respective LC50 (0.4 mM) of the zebrafish embryo assay (FET). The observed effects on the enzyme activity of the four other xenobiotics were not or just slightly more sensitive (factor of 1.5 to 3), but the differences did not reach statistical significance. Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors. However, specific cathepsin inhibitors might be identified using the zebrafish embryo.
Toxicokinetics (TK) of ionic compounds in the toxico-/pharmacological model zebrafish embryo (Danio rerio) depend on absorption, distribution, metabolism, and elimination (ADME) processes. Previous research indicated involvement of transport proteins in the TK of the anionic pesticide bromoxynil in zebrafish embryos. We here explored the interaction of bromoxynil with the organic anion-transporting polypeptide zebrafish Oatp1d1. Mass spectrometry imaging revealed accumulation of bromoxynil in the gastrointestinal tract of zebrafish embryos, a tissue known to express Oatp1d1. In contrast to the Oatp1d1 reference substrate bromosulfophthalein (BSP), which is actively taken up by transfected HEK293 cells overexpressing zebrafish Oatp1d1, those cells accumulated less bromoxynil than empty vector-transfected control cells. This indicates cellular efflux of bromoxynil by Oatp1d1. This was also seen for diclofenac but not for carbamazepine, examined for comparison. Correspondingly, internal concentrations of bromoxynil and diclofenac in the zebrafish embryo were increased when coexposed with BSP, inhibiting the activities of various transporter proteins, including Oatp1d1. The effect of BSP on accumulation of bromoxynil and diclofenac was enhanced in further advanced embryo stages, indicating increased efflux activity in those stages. An action of Oatp1d1 as an efflux transporter of ionic environmental compounds in zebrafish embryos should be considered in future TK assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.