This paper reports a microfluidic device made of polydimethylsiloxane (PDMS) with an embedded polycarbonate (PC) thin film to study cell migration under combinations of chemical and oxygen gradients. Both chemical and oxygen gradients can greatly affect cell migration in vivo; however, due to technical limitations, very little research has been performed to investigate their effects in vitro. The device developed in this research takes advantage of a series of serpentine-shaped channels to generate the desired chemical gradients and exploits a spatially confined chemical reaction method for oxygen gradient generation. The directions of the chemical and oxygen gradients are perpendicular to each other to enable straightforward migration result interpretation. In order to efficiently generate the oxygen gradients with minimal chemical consumption, the embedded PC thin film is utilized as a gas diffusion barrier. The developed microfluidic device can be actuated by syringe pumps and placed into a conventional cell incubator during cell migration experiments to allow for setup simplification and optimized cell culture conditions. In cell experiments, we used the device to study migrations of adenocarcinomic human alveolar basal epithelial cells, A549, under combinations of chemokine (stromal cell-derived factor, SDF-1α) and oxygen gradients. The experimental results show that the device can stably generate perpendicular chemokine and oxygen gradients and is compatible with cells. The migration study results indicate that oxygen gradients may play an essential role in guiding cell migration, and cellular behavior under combinations of gradients cannot be predicted from those under single gradients. The device provides a powerful and practical tool for researchers to study interactions between chemical and oxygen gradients in cell culture, which can promote better cell migration studies in more in vivo-like microenvironments.
This paper reports a biomimetic microfluidic device capable of reconstituting physiological physical microenvironments in lungs during fetal development for cell culture. The device integrates controllability of both hydrostatic pressure and cyclic substrate deformation within a single chip to better mimic the in vivo microenvironments. For demonstration, the effects of drug treatment and physical stimulations on surfactant protein C (SPC) expression of lung epithelial cells (A549) are studied using the device. The experimental results confirm the device’s capability of mimicking in vivo microenvironments with multiple physical stimulations for cell culture applications. Furthermore, the results indicate the critical roles of physical stimulations in regulating cellular behaviors. With the demonstrated functionalities and performance, the device is expected to provide a powerful tool for further lung development studies that can be translated to clinical observation in a more straightforward manner. Consequently, the device is promising for construction of more in vitro physiological microenvironments integrating multiple physical stimulations to better study organ development and its functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.