Oxaliplatin is widely used as a key drug in the treatment of colorectal cancer. However, its administration is associated with the dose-limiting adverse effect, peripheral neuropathy. Platinum accumulation in the dorsal root ganglion (DRG) is the major mechanism responsible for oxaliplatin-induced neuropathy. Some drug transporters have been identified as platinum complex transporters in kidney or tumor cells, but not yet in DRG. In the present study, we investigated oxaliplatin transporters and their contribution to peripheral neuropathy. We identified 12 platinum transporters expressed in DRG with real-time PCR, and their transiently overexpressing cells were established. After exposure to oxaliplatin, the accumulation of platinum in these overexpressing cells was evaluated using a coupled plasma mass spectrometer. Octn1/2-and Mate1-expressing cells showed the intracellular accumulation of oxaliplatin. In an animal study, peripheral neuropathy developed after the administration of oxaliplatin (4 mg/kg, intravenously, twice a week) to siRNA-injected rats (0.5 nmol, intrathecally, once a week) was demonstrated with the von Frey test. The knockdown of Octn1 in DRG ameliorated peripheral neuropathy, and decreased platinum accumulation in DRG, whereas the knockdown of Octn2 did not. Mate1 siRNA-injected rats developed more severe neuropathy than control rats. These results indicate that Octn1 and Mate1 are involved in platinum accumulation at DRG and oxaliplatininduced peripheral neuropathy.
BackgroundOxaliplatin has widely been used as a key drug in the treatment of colorectal cancer; however, it causes peripheral neuropathy. Exenatide, a glucagon-like peptide-1 (GLP-1) agonist, is an incretin mimetic secreted from ileal L cells, which is clinically used to treat type 2 diabetes mellitus. GLP-1 receptor agonists have been reported to exhibit neuroprotective effects on the central and peripheral nervous systems. In this study, we investigated the effects of exenatide on oxaliplatin-induced neuropathy in rats and cultured cells.MethodsOxaliplatin (4 mg/kg) was administered intravenously twice per week for 4 weeks, and mechanical allodynia was evaluated using the von Frey test in rats. Axonal degeneration was assessed by toluidine blue staining of sciatic nerves.ResultsRepeated administration of oxaliplatin caused mechanical allodynia from day 14 to 49. Although the co-administration of extended-release exenatide (100 μg/kg) could not inhibit the incidence of oxaliplatin-induced mechanical allodynia, it facilitated recovery from the oxaliplatin-induced neuropathy with reparation of axonal degeneration. Inhibition of neurite outgrowth was evaluated in cultured pheochromocytoma 12 (PC12) cells. Exenatide inhibited oxaliplatin-induced neurite degeneration, but did not affect oxaliplatin-induced cell injury in cultured PC12 cells. Additionally, extended-release exenatide had no effect on the anti-tumor activity of oxaliplatin in cultured murine colon adenocarcinoma 26 (C-26) cells or C-26 cell-implanted mice.ConclusionThese results suggest that exenatide may be useful for treating peripheral neuropathy induced by oxaliplatin in colorectal cancer patients with type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.