The HSF (heat shock factor) gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum), which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.
Background Lima bean (Phaseolus lunatus L.) is a member of subfamily Phaseolinae belonging to the family Leguminosae and an important source of plant proteins for the human diet. As we all know, lima beans have important economic value and great diversity. However, our knowledge of the chloroplast genome level of lima beans is limited. Results The chloroplast genome of lima bean was obtained by Illumina sequencing technology for the first time. The Cp genome with a length of 150,902 bp, including a pair of inverted repeats (IRA and IRB 26543 bp each), a large single-copy (LSC 80218 bp) and a small single-copy region (SSC 17598 bp). In total, 124 unique genes including 82 protein-coding genes, 34 tRNA genes, and 8 rRNA genes were identified in the P. lunatus Cp genome. A total of 61 long repeats and 290 SSRs were detected in the lima bean Cp genome. It has a typical 50 kb inversion of the Leguminosae family and an 70 kb inversion to subtribe Phaseolinae. rpl16, accD, petB, rsp16, clpP, ndhA, ndhF and ycf1 genes in coding regions was found significant variation, the intergenic regions of trnk-rbcL, rbcL-atpB, ndhJ-rps4, psbD-rpoB, atpI-atpA, atpA-accD, accD-psbJ, psbE-psbB, rsp11-rsp19, ndhF-ccsA was found in a high degree of divergence. A phylogenetic analysis showed that P. lunatus appears to be more closely related to P. vulgaris, V.unguiculata and V. radiata. Conclusions The characteristics of the lima bean Cp genome was identified for the first time, these results will provide useful insights for species identification, evolutionary studies and molecular biology research.
Flesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Flesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Powdery mildew (PM) is the main disease that afflicts bottle gourd. Previous studies on PM mainly focused on its effects on pumpkin, melon, and other crops; however, the exact molecular mechanism of bottle gourd resistance to PM remains unclear. RNA sequencing (RNA-Seq) technology was used to investigate the dynamic changes in leaf transcriptome profiles between resistant and susceptible gourd at 12, 24, 48, and 72 h post-inoculation with powdery mildew. Compared with a susceptible variety (G3), the expression levels of the differentially expressed genes of phenylpropanoid biosynthesis, starch, and sucrose metabolism, and plant–pathogen interaction pathways in disease-resistant plants were upregulated. We propose that disease resistance and tolerance in bottle gourd are enhanced via several pathways, including the antioxidant system, phenylalanine biosynthesis, and cell wall cellulose synthesis. Our research will provide an important basis for further screening and breeding PM resistance in bottle gourd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.