This study presents a hybrid renewable energy system that yields minimum total project cost and maximum reliability. The system is in modular configuration consisting of photovoltaic (PV) array, wind turbine, battery storage, AC load and a dump load. Also, the minimisation of unutilised surplus power is taken into consideration as one of the design objectives. In this study, a new technique named iterative filter selection approach is used in designing the hybrid PV-wind turbine-battery system to obtain the best acceptable solution while considering all the design objectives. The system is then justified by comparing with iterative-Pareto-fuzzy and particle swarm optimisation techniques. The technique is found to be superior in terms of total project cost with satisfaction to the load demand. The method is simulated using MATLAB and the results are presented in the study with proper discussion.
Smart grid technology enables active participation of the consumers to reschedule their energy consumption through demand response (DR). The price-based program in demand response indirectly induces consumers to dynamically vary their energy use patterns following different electricity prices. In this paper, a real-time price (RTP)-based demand response scheme is proposed for thermostatically controllable loads (TCLs) that contribute to a large portion of residential loads, such as air conditioners, refrigerators and heaters. Wind turbine generator (WTG) systems, solar thermal power systems (STPSs), diesel engine generators (DEGs), fuel cells (FCs) and aqua electrolyzers (AEs) are employed in a hybrid microgrid system to investigate the contribution of price-based demand response (PBDR) in frequency control. Simulation results show that the load frequency control scheme with dynamic PBDR improves the system’s stability and encourages economic operation of the system at both the consumer and generation level. Performance comparison of the genetic algorithm (GA) and salp swarm algorithm (SSA)-based controllers (proportional-integral (PI) or proportional integral derivative (PID)) is performed, and the hybrid energy system model with demand response shows the supremacy of SSA in terms of minimization of peak load and enhanced frequency stabilization of the system.
The traditional power systems are rapidly digitalized and automated for increased monitoring and control. This automation of power system communication has made it possible to monitor and control operations remotely in a plant. However, this also opens up an exploitation vector for attackers, after they gain access to the substation network. This scenario can only be investigated through an in-depth study of communication protocols and control authority concepts associated with power system. IEC 61850 has emerged as the most popular protocol for power system communication. In this paper, we investigate realtime simulation of power systems with IEC 61850 based communication, in order to devise a testbed that can be used to validate false data injection cyberattacks and evaluate their impact. Based on the results, we discuss possible countermeasures to such attacks and outline future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.