The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.
In Saccharomyces cerevisiae, the ability to use proline as a nitrogen source requires the Put3p transcriptional regulator, which turns on the expression of the proline utilization genes, PUT1 and PUT2, in the presence of the inducer proline and in the absence of preferred nitrogen sources. Changes in target gene expression occur through an alteration in activity of the DNA‐bound Put3p, a member of the Zn(II)2Cys6 binuclear cluster family of proteins. Here, we report that the ‘on’ conformation can be mimicked in the absence of proline by the insertion of an epitope tag in several different places in the protein, as well as by specific amino acid changes that suppress a put3 mutation leading to non‐inducibility of the pathway. In addition, the presence of proline causes a conformational change in the Put3 protein detected by increased sensitivity to thrombin or V8 protease. These findings suggest that Put3p shifts from an inactive to an activate state via conformational changes.
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as allantoin, urea, γ-aminobutyrate, or proline when preferred nitrogen sources such as asparagine, glutamine, or ammonium ions are unavailable in the environment. To use proline as the sole nitrogen source, cells must activate the expression of the proline transporters and the genes that encode the catabolic enzymes proline oxidase (PUT1) and Δ1-pyrroline-5-carboxylate dehydrogenase (PUT2). Transcriptional activation of the PUT genes requires the PUT3 regulatory protein, proline, and relief from nitrogen repression. PUT3 is a 979 amino acid protein that binds a short DNA sequence in the promoters of PUT1 and PUT2, independent of the presence of proline. The functional domains of PUT3 have been studied by biochemical and molecular tests and analysis of activator-constitutive and activator-defective mutant proteins. Mutations in the URE2 gene relieve nitrogen repression, permitting inducer-independent transcription of the PUT genes in the presence of repressing nitrogen sources. The GLN3 protein that activates the expression of many genes in alternative nitrogen source pathways is not required for the expression of the PUT genes under inducing, derepressing conditions (proline) or noninducing, repressing conditions (ammonia). Although it has been speculated that the URE2 protein antagonizes the action of GLN3 in the regulation of many nitrogen assimilatory pathways, URE2 appears to act independently of GLN3 in the proline-utilization pathway. Key words: Saccharomyces cerevisiae, proline utilization, nitrogen repression.
Proline can serve as a nitrogen source for the yeast Saccharomyces cerevisiae when preferred sources of nitrogen are absent from the growth medium. PUT3, the activator of the proline utilization pathway, is required for the transcription of the genes encoding the enzymes that convert proline to glutamate. PUT3 is a 979 amino acid protein that constitutively binds a short DNA sequence in the promoters of its target genes, but does not activate their expression in the absence of induction by proline and in the presence of preferred sources of nitrogen. To understand how PUT3 is converted from an inactive to an active state, a dissection of its functional domains has been undertaken. Biochemical and molecular tests, domain swapping experiments, and an analysis of activator-constitutive and activator-defective mutant proteins indicate that PUT3 is dimeric and activates transcription with its negatively charged carboxyterminus, which does not appear to contain a proline-responsive domain. A mutation in the conserved central domain found in many fungal activators interferes with activation without affecting DNA binding or protein stability. Intragenic suppressors of the central domain mutation have been isolated and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.