Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2؊/؊ mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2؊/؊ mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.human mesenchymal stem cell ͉ osteoclast ͉ osteoblast P roline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK) are nonreceptor tyrosine kinases, and together they constitute the focal adhesion kinase subfamily (1). Unlike FAK, PYK2 expression is relatively restricted, with highest levels in the brain and the hematopoietic system. PYK2Ϫ/Ϫ mice have been described previously and appear normally developed (2, 3). Characterization of the immune system of PYK2Ϫ/Ϫ animals revealed the absence of marginal zone B cells along and abnormal T cell-independent type II responses (2), as well as altered macrophage morphology, adhesion, and migration (3).Although PYK2 is expressed in both bone-forming osteoblasts and bone-resorbing osteoclasts, the skeletal phenotype of PYK2Ϫ/Ϫ mice has not been described. In vitro studies pointed to a positive role for PYK2 in osteoclast maturation and bone resorption. PYK2 localizes to the podosomes of osteoclasts (4), and, upon integrin binding, cell attachment, and actin ring formation, PYK2 associates with a variety of proteins including p130 CAS (5), Src (4), Cbl (6), integrins (4), gelsolin (7), and paxillin (8). Antisense depletion of PYK2 (9), but not the expression of a kinase inactive dominant negative mutant (10), blocked osteoclast spreading and bone resorption, indicating that PYK2 catalytic activity may be dispensable. The in vitro effects of bone anabolic stimuli suggested that PYK2 might have a positive role in osteoblasts as well. Treatment of osteoblast cells with fluoroaluminate led to increased PYK2 autophosphorylation, Src association, and kinase activity (11) and was associated with increased cell attachment and spreading (12). Likewise, in an anabolic model of mechanical loading, PYK2 autophosphorylation and kinase activity were stimulated in o...
Nucleolar phosphoprotein B23 is a putative ribosome assembly factor with a relatively high affinity for peptides containing sequences of nuclear localization signals (NLSs) of the SV40 T-antigen type [Szebeni, A., Herrera, J. E., & Olson, O. J. (1995) Biochemistry 34, 8037-8042]. The effects of protein B23 on nuclear import were determined by an in vitro assay [Dean, D. A., & Kasamatsu, H. (1994) J. Biol. Chem. 269, 4910-4916] using NLS peptide-conjugated bovine serum albumin (NLS-BSA) or the HIV-1 Rev protein as substrates for import into isolated rat liver nuclei. The import was ATP-dependent and inhibited by wheat germ agglutinin or by an antibody against p97, a component of the nuclear import system. The rate of import of either substrate was increased if protein B23 was added to the incubation medium. Similar enhancements of import were seen with both isoforms (B23.1 and B23.2). The stimulatory effect on Rev protein import was saturable with maximum stimulation (2-3-fold) at a molar ratio of protein B23:Rev of approximately 1:1. Phosphorylation of protein B23.1 by casein kinase II produced an additional doubling of the import rate. This effect was not seen if protein B23.1 was phosphorylated with a cdc2 type protein kinase. Mutant forms of protein B23.1 in which the nuclear localization signal was either deleted or altered did not stimulate import of the substrates. These results suggest that protein B23 plays a role as an accessory factor in the nuclear import of the NLS-containing proteins and that phosphorylation at sites in the highly acidic segments of the protein enhances the stimulatory effect.
The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) gene superfamily of growth and differentiation factors. Members of the BMP family were originally cloned and characterized by their ability to induce ectopic bone formation. Of the various BMPs cloned, the bone inductive ability of BMP-7 (OP-1) and BMP-2 has been well characterized. Both BMP-7 and -2 have been shown to have clinical utility in the healing of non-union fractures. However, in spite of the various advances in BMP research, the physiological regulation of BMPs is not well understood. Here we studied the expression of BMP-7 by cloning a 4.6-kB fragment of the human BMP-7 promoter (hBMP-7p) and placing it upstream of a luciferase reporter. The promoter reporter construct was stably transfected into different cell backgrounds and its regulation by various factors was investigated. We show that retinoic acid (RA) treatment results in an upregulation of the hBMP-7p reporter activity. This regulation of the hBMP-7p was further confirmed by Northern blot, PCR, and Western blot analyses, which showed an increase in both BMP-7 mRNA and protein expression upon treatment with RA. We further show that RA specifically upregulates expression of osteocalcin via activation of BMP-7 mRNA and protein in vitro. Similarly, prostaglandin E(2) (PGE(2)) treatment increases BMP-7 mRNA and protein levels, but does not transcriptionally activate the hBMP-7p. Additionally, in vivo expression of BMP-7 in bone was increased upon PGE(2) treatment. In conclusion, RA and PGE(2) upregulate BMP-7 protein expression both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.