Cell cycle dysregulation is a characteristic hallmark of malignancies, which results in uncontrolled cell proliferation and eventual tumor formation. Cyclin-dependent kinase 1 (CDK1) is a member of the family of cell cycle regulatory proteins involved in cell cycle maintenance. Given that overexpression of CDK1 has been associated with cancer, CDK1 inhibitors may restore equilibrium to the skewed cell cycle system and operate as an effective therapeutic drug. This study aimed to identify and classify inhibitors having a higher affinity for CDK1 and also evaluate the expression pattern and prognostic relevance of CDK1 in a wide range of cancers. We investigated therapeutic molecules structurally similar to dinaciclib for their ability to inhibit CDK1 selectively. To assess the therapeutic potential of screened Dinaciclib analogs, we used drug likeliness analysis, molecular docking, and simulation analysis. CDK1 was found to be highly upregulated across several malignancies and is associated with poor overall and relapse-free survival. Molecular docking and dynamics evaluation identified two novel dinaciclib analogs as potent CDK1 inhibitors with high binding affinity and stability compared to dinaciclib. The results indicate that increased CDK1 expression is associated with decreased OS and RFS. Additionally, dinaciclib analogs are prospective replacements for dinaciclib since they exhibit increased binding affinity, consistent with MDS findings, and have acceptable ADMET qualities. The discovery of new compounds may pave the road for their future application in cancer prevention through basic, preclinical, and clinical research.
Supplementary Information
The online version contains supplementary material available at 10.1007/s12032-022-01748-2.
Around the world, polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic condition that typically affects 6–20% of females. Our study’s major goal was to examine how chlorogenic acid (CGA) affected mice with endocrine and metabolic problems brought on by letrozole-induced PCOS. Group I served as the control for 81 days; Group II was given Letrozole (LETZ) orally at a dose of 6 mg/kg bw for 21 days to induce PCOS; Group III was given LETZ (6 mg/kg) for 21 days, followed by treatment with CGA (50 mg/kg bw daily) for 60 days. The study indicated that LETZ-treated mice displayed symptoms of PCOS, such as dyslipidemia, hyperinsulinemia, elevated testosterone, increases in inflammatory markers and malonaldehyde, and a decline in antioxidants (Ar, lhr, fshr, and esr2) in the ovaries. These alterations were affected when the mice were given CGA and were associated with reduced levels of adiponectin. Adiponectin showed interactions with hub genes, namely MLX interacting protein like (MLXIPL), peroxisome proliferator-activated receptor gamma Coactivator 1- alpha (PPARGC1), peroxisome proliferator-activated receptor gamma (Pparg), and adiponectin receptor 1 (Adipor1). Lastly, the gene ontology of adiponectin revealed that adiponectin was highly involved in biological processes. The findings from our research suggest that adiponectin has direct impacts on metabolic and endocrine facets of PCOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.