Hydrogen sulfide is produced endogenously by a variety of enzymes involved in cysteine metabolism. Clinical data indicate that endogenous levels of hydrogen sulfide are diminished in various forms of cardiovascular diseases. The aim of the current study was to investigate the effects of hydrogen sulfide supplementation on cardiac function during reperfusion in a clinically relevant experimental model of cardiopulmonary bypass. Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 minutes of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or the sodium sulfide infusion (1 mg/kg/hour, n = 6). Biventricular hemodynamic variables were measured by combined pressure-volume-conductance catheters. Coronary and pulmonary blood flow, vasodilator responses to acetylcholine and sodiumnitroprusside and pulmonary function were also determined. Administration of sodium sulfide led to a significantly better recovery of left and right ventricular systolic function (P < 0.05) after 60 minutes of reperfusion. Coronary blood flow was also significantly higher in the sodium sulfide-treated group (P < 0.05). Sodium sulfide treatment improved coronary blood flow, and preserved the acetylcholine-induced increases in coronary and pulmonary blood (P < 0.05). Myocardial ATP levels were markedly improved in the sulfide-treated group. Thus, supplementation of sulfide improves the recovery of myocardial and endothelial function and energetic status after hypothermic cardiac arrest during cardiopulmonary bypass. These beneficial effects occurred without any detectable adverse hemodynamic or cardiovascular effects of sulfide at the dose used in the current study. The aim of the current study was to test potential cytoprotective and anti-inflammatory effects of the novel biological mediator hydrogen sulfide in murine models. Murine J774 macrophages were grown in culture and exposed to cytotoxic concentrations of nitrosoglutathione, or peroxynitrite (a reactive species formed from the reaction of nitric oxide and superoxide). Pretreatment of the cells with sodium sulfide (60-300 µM) reduced the loss of cell viability elicited by the nitric oxide donor compound (3 mM) or by peroxynitrite (3 mM), as measured by the MTT method. Sodium sulfide did not affect cell viability in the concentration range tested. In mice subjected to bacterial lipopolysaccharide (LPS, 5 mg/kg i.p.), treatment of the animals with sodium sulfide (0.2 mg/kg/hour for 4 hours, administered in Alzet minipumps) reduced the LPSinduced increase in plasma IL-1β and TNFα levels. These responses were attenuated when animals were pretreated with the heme oxygenase inhibitor tin-protoporphyrin IX (6 mg/kg). The current results point to the cytoprotective and anti-inflammatory effects of hydrogen sulfide, in cells exposed to nitrosative stress, and in animals subjected to endotoxemia. Introduction It has been previously shown that the two forms of acute cholecystitis, acute acalculous cholecystiti...
IntroductionWe previously showed that erythropoietin (EPO) attenuates the morphological signs of spinal cord ischemia/reperfusion (I/R) injury in swine [1] without, however, improving neurological function. The clinical use of EPO has been cautioned most recently due to serious safety concerns arising from an increased mortality in acute stroke patients treated with EPO and simultaneously receiving systemic thrombolysis [2]. Carbamylated EPO (cEPO) is an EPO derivative without erythropoietic activity and devoid of the EPO side eff ects, but with apparently well maintained cytoprotective qualities [3]. We therefore tested the hypothesis whether cEPO may be equally effi cient as EPO in reducing morphological as well as functional aortic occlusion-induced spinal cord I/R injury. Methods In a randomized and blinded trial pigs received either vehicle (control, n = 9), EPO or cEPO, respectively (n = 9 each; 5,000 IU/kg over 30 minutes before and during the fi rst 4 hours of reperfusion). Animals underwent 30 minutes of thoracic aortic balloon occlusion with catheters placed immediately downstream of the A. subclavia and upstream of the aortic trifurcation. Spinal cord function was assessed by motor evoked potentials (MEP as percentage of the amplitude before aortic occlusion) and lower limb refl exes (assessed as the subjective strength of response) for a period of 10 hours after reperfusion. Tissue damage was evaluated using Nissl staining. Results Both EPO-treated and cEPO-treated animals presented with attenuated spinal cord injury in the Nissl staining (median (quartile) percentage of damaged neurons in the thoracic segments: control 27 (25,44), cEPO 8 (4,10), and EPO 5 (5,7), P <0.001 vs control group; in the lumbar segments: control 26 (19,32), cEPO 7 (5,13), EPO 8 (5,10), P <0.001 vs control group). However, while only cEPO treatment was associated with recovery of the MEP amplitude to pre-occlusion values when compared with the control group (P <0.05), lower limb refl ex response was comparably restored stronger in both treatment groups (P <0.05 vs control). Conclusions In a clinically relevant porcine model mimicking aortic crossclamping during vascular surgery repair of thoracic aortic aneurysm, cEPO protected spinal cord function and integrity as eff ective as EPO when applied at equipotent doses. Acknowledgements Supported by the Deutsche Forschungs gemeinschaft (SCHE 899/2-2). References Introduction Unfolded protein response (UPR)-mediated apoptosis plays a pivotal role in ischemia-reperfusion injury. Sodium 4-phenylbutyrate (PBA) has been reported to act as a chemical chaperone inhibiting UPR-mediated apoptosis triggered by ischemia in various organs other than the heart. Therefore we investigated whether PBA reduces UPR-mediated apoptosis and protects against myocardial ischemia-reperfusion injury in mice. Methods C57BL/6 mice were subjected to 30 minutes LAD ischemia followed by reperfusion. PBA (100 mg/kg) or PBS (control) was administrated intraperitoneally just before ischemia. Apoptosis, infarct ...
Background and aims Patients' outcome after ICU transfer reflect hospital's post-ICU care status. This study assessed association of after-hour ICU transfer on patient outcome. Subjects and methods Single-centre, retrospective analysis of data between March 2016 and April 2017 was performed at a tertiary-care hospital in India. Patient data were collected on all consecutive ICU admissions during study period. Patients were categorized according to ICU transfer time into daytime (08:00-19:59 hours) and after-hour (20:00-07:59 hours). Patients transferred to other ICUs/hospitals, died in ICU, or discharged home from ICU were excluded. Only ?rst ICU admission was considered for outcome analysis. Primary outcome-hospital mortality; secondary outcomes-ICU readmission and hospital length of stay (LOS). All analysis were adjusted for illness severity. Results Of 1857 patients admitted during study period,1356 were eligible for study; out of which 53.9% were males and 383(28%) patients transferred during after-hour. Mean age of two groups (daytime vs. after-hour 65.7±15.2 vs. 66.3±16.2 years) was similar ( p = 0.7). Mean APACHE IV score was comparable between daytime vs. after-hour transfers (45.6±20.4 vs 46.8±22; p = 0.05). Unadjusted hospital mortality rate of after-hour-transfers was significantly higher compared to daytime-transfers (7.1% vs. 4.1%; p = 0.02). After adjustment with illness severity, after-hour-transfers were associated with significantly higher hospital mortality compared to daytime-transfers(aOR1.7, 95%CI 1.1,2.8; p = 0.04). Median duration of hospital LOS and ICU readmission though higher for after-hour-transfers, was not statistically significant in adjusted analysis (aOR hospitalLOS 1.1, 95% CI 0.8, 1.4, p = 0.5; aOR readmission 1.6, 95% CI 0.9,2.7; p = 0.06, respectively). Conclusion After-hour-transfers from ICU is associated with significantly higher hospital mortality. Hospital LOS and readmission rates are similar for daytime and after-hour -transfers. How to cite this article Chatterjee S, Sinha S et al ., Transfer Time from the Intensive Care Unit and Patient Outcome: A Retrospective Analysis from a Tertiary Care Hospital in India. Indian J Crit Care Med 2019;23(3):115-121.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.