Utility-based shortfall risk measures (SR) have received increasing attention over the past few years for their potential to quantify the risk of large tail losses more effectively than conditional value at risk. In this paper, we consider a distributionally robust version of the shortfall risk measure (DRSR) where the true probability distribution is unknown and the worst distribution from an ambiguity set of distributions is used to calculate the SR. We start by showing that the DRSR is a convex risk measure and under some special circumstance a coherent risk measure. We then move on to study an optimization problem with the objective of minimizing the DRSR of a random function and investigate numerical tractability of the optimization problem with the ambiguity set being constructed through φ-divergence ball and Kantorovich ball. In the case when the nominal distribution in the balls is an empirical distribution constructed through iid samples, we quantify convergence of the ambiguity sets to the true probability distribution as the sample size increases under the Kantorovich metric and consequently the optimal values of the corresponding DRSR problems. Specifically, we show that the error of the optimal value is linearly bounded by the error of each of the approximate ambiguity sets and subsequently derive a confidence interval of the optimal value under each of the approximation schemes. Some prelimThe research is supported by EPSRC Grant EP/M003191/1. The work of the first author was partially carried out while she was working as a postdoctoral research fellow in the School of Mathematics, University of Southampton supported by the EPSRC grant.
Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.