The effects of high hydrostatic pressure on the structure and biological activity of infectious bursal disease virus (IBDV), a commercially important pathogen of chickens, were investigated. IBDV was completely dissociated into subunits at a pressure of 240 MPa and 0 8C revealed by the change in intrinsic fluorescence spectrum and light scattering. The dissociation of IBDV showed abnormal concentration dependence as observed for some other viruses. Electron microscopy study showed that morphology of IBDV had an obvious change after pressure treatment at 0 8C. It was found that elevating pressure destroyed the infectivity of IBDV, and a completely pressure-inactivated IBDV could be obtained under proper conditions. The pressure-inactivated IBDV retained the original immunogenic properties and could elicit high titers of virus neutralizing antibodies. These results indicate that hydrostatic pressure provides a potential physical means to prepare antiviral vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.