The origin of most bacterial infections in the urinary tract is often presumed to be the gut. Herein, we investigate the relationship between the gut microbiota and future development of bacteriuria and urinary tract infection (UTI). We perform gut microbial profiling using 16S rRNA gene deep sequencing on 510 fecal specimens from 168 kidney transplant recipients and metagenomic sequencing on a subset of fecal specimens and urine supernatant specimens. We report that a 1% relative gut abundance of Escherichia is an independent risk factor for Escherichia bacteriuria and UTI and a 1% relative gut abundance of Enterococcus is an independent risk factor for Enterococcus bacteriuria. Strain analysis establishes a close strain level alignment between species found in the gut and in the urine in the same subjects. Our results support a gut microbiota–UTI axis, suggesting that modulating the gut microbiota may be a potential novel strategy to prevent UTIs.
Urinary tract infection (UTI) is a common complication in kidney transplant recipients and can lead to significant morbidity and mortality. Recent evidence supports a role for the gut as a source for UTIs but little is known about the relationship between gut commensal bacteria and UTI development. We hypothesized that the abundance of gut commensal bacteria is associated with a lower risk of developing bacteriuria and UTIs. We performed gut microbiome profiling using 16S rRNA gene sequencing of the V4-V5 hypervariable region on 510 fecal specimens in 168 kidney transplant recipients. Fifty-one kidney transplant recipients (30%) developed Enterobacteriaceae bacteriuria within the first 6 months after transplantation (Enterobacteriaceae Bacteriuria Group) and 117 did not (No Enterobacteriaceae Bacteriuria Group). The relative abundances of Faecalibacterium and Romboutsia were significantly higher in the fecal specimens from the No Enterobacteriaceae Bacteriuria Group than those from the Enterobacteriaceae Bacteriuria Group (Adjusted P value<.01). The combined relative abundance of Faecalibacterium and Romboutsia was inversely correlated with the relative abundance of Enterobacteriaceae (r = −0.13, P = .003). In a multivariable Cox Regression, a top tercile cutoff of the combined relative abundance of Faecalibacterium and Romboutsia of ≥13.7% was independently associated with a decreased risk for Enterobacteriaceae bacteriuria (hazard ratio 0.3, P = .02) and Enterobacteriaceae UTI (hazard ratio 0.4, P = .09). In conclusion, we identify bacterial taxa associated with decreased risk for Enterobacteriaceae bacteriuria and Enterobacteriaceae UTI in kidney transplant recipients, which supports future studies on modulating the gut microbiota as a novel treatment for preventing UTIs.
Post‐transplant diarrhea is a common complication after solid organ transplantation and is frequently attributed to the widely prescribed immunosuppressant mycophenolate mofetil (MMF). Given recent work identifying the relationship between MMF toxicity and gut bacterial β‐glucuronidase activity, we evaluated the relationship between gut microbiota composition, fecal β‐glucuronidase activity, and post‐transplant diarrhea. We recruited 97 kidney transplant recipients and profiled the gut microbiota in 273 fecal specimens using 16S rRNA gene sequencing. We further characterized fecal β‐glucuronidase activity in a subset of this cohort. Kidney transplant recipients with post‐transplant diarrhea had decreased gut microbial diversity and decreased relative gut abundances of 12 genera when compared to those without post‐transplant diarrhea (adjusted p value < .15, Wilcoxon rank sum test). Among the kidney transplant recipients with post‐transplant diarrhea, those with higher fecal β‐glucuronidase activity had a more prolonged course of diarrhea (≥7 days) compared to patients with lower fecal β‐glucuronidase activity (91% vs 40%, p = .02, Fisher's exact test). Our data reveal post‐transplant diarrhea as a complex phenomenon with decreased gut microbial diversity and commensal gut organisms. This study further links commensal bacterial metabolism with an important clinical outcome measure, suggesting fecal β‐glucuronidase activity could be a novel biomarker for gastrointestinal‐related MMF toxicity.
Background The gut microbiome is being associated increasingly with development of infections besides Clostridium difficile infection. A recent study found an association between butyrate‐producing gut (BPG) bacteria and less frequent development of lower respiratory viral infections in allogeneic hematopoietic stem cell transplant recipients (Haak et al, Blood 131(26): 2978, 2018). In this investigation, we examine the relationship between the abundance of BPG bacteria and the development of viral infections in a cohort of kidney transplant recipients. Methods We recruited 168 kidney transplant recipients who provided 510 fecal specimens in the first 3 months after transplantation and profiled the gut microbiota using 16S rRNA gene sequencing of the V4‐V5 hypervariable region. We classified the kidney transplant recipients into higher BPG Bacteria Group and lower BPG Bacteria Group using the same criteria of 1% relative gut abundance of BPG bacteria as the Haak et al study. Results Administration of antibiotics against anaerobes was associated with a significant decrease in the relative gut abundance of BPG bacteria. The higher BPG Bacteria Group was associated with less development of respiratory viral infections (Hazard Ratio [HR]: 0.28, P = .01) but not with less development of CMV viremia (HR: 0.38, P = .13) or BK viremia (HR: 1.02, P = .98) at 2 years post transplantation. Conclusion Our pilot investigation supports future validation of the relationship between high relative gut abundance of BPG bacteria and decreased risk for development of respiratory viral infections.
Background:In kidney transplant recipients, gastrointestinal (GI) pathogens in feces are only evaluated during diarrheal episodes. Little is known about the prevalence of GI pathogens in asymptomatic individuals in this population. Methods:We recruited 142 kidney transplant recipients who provided a non-diarrheal fecal sample within the first 10 days after transplantation. The specimens were evaluated for GI pathogens using the BioFire ® FilmArray ® GI Panel (BioFire Diagnostics, LLC), which tests for 22 pathogens. The fecal microbiome was also characterized using 16S rRNA gene sequencing of the V4-V5 hypervariable region. We evaluated whether detection of Clostridioides difficile and other GI pathogens was associated with post-transplant diarrhea within the first 3 months after transplantation.Results: Among the 142 subjects, a potential pathogen was detected in 43 (30%) using the GI Panel. The most common organisms detected were C difficile (n = 24, 17%), enteropathogenic Escherichia coli (n = 8, 6%), and norovirus (n = 5, 4%). Detection of a pathogen on the GI panel or detection of C difficile alone was not associated with future post-transplant diarrhea (P > .05). The estimated number of gut bacterial species was significantly lower in subjects colonized with C difficile than those not colonized with a GI pathogen (P = .01). Conclusion:Colonization with GI pathogens, particularly C difficile, is common at the time of kidney transplantation but does not predict subsequent diarrhea. Detection of C difficile carriage was associated with decreased microbial diversity and may be a biomarker of gut dysbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.