Production of highly efficient biomass-based microbial biopesticides significantly depends on downstream processing in terms of obtaining as high concentration of viable cells as possible. Microfiltration is one of the recommended operations for microbial biomass separation, but its main limitation is permeate flux decrease due to the membrane fouling. The effect of air sparging as a hydrodynamic technique for improvement of permeate flux during microfiltration of Bacillus velezensis cultivation broth was investigated. Modeling of the microfiltration was performed using the response surface methodology, while desirability function approach and genetic algorithm were applied for optimization, i.e., maximization of permeate flux and minimization of specific energy consumption. The results have revealed antagonistic relationship between the investigated dependent variables. The optimized values of superficial feed velocity and transmembrane pressure were close to the mean values of the investigated value ranges (0.68 bar and 0.96 m/s, respectively), while the optimized value of superficial air velocity had a more narrow distribution around 0.25 m/s. The results of this study have revealed a significant improvement of microfiltration performance by applying air sparging, thus this flux improvement method should be further investigated in downstream processing of different bacterial cultivation broths.
Degradation of environment is a challenge to crop production around the world. Biological control of various plant diseases using antagonistic bacteria is an encouraging alternative to traditionally used chemical control strategies. Chitosan as a well-known natural flocculation agent also exhibits antimicrobial activity. The goal of this study was to investigate a dual nature of chitosan in flocculation of Bacillus sp. BioSol021 cultivation broth intended for biocontrol applications. Experiments were performed based on L18 standard Taguchi orthogonal array design with five input parameters (chitosan type and dosage, pH value, rapid and slow mixing rates). In this study, the grey relational analysis was used to perform multi-objective optimization of the chosen responses, i.e., flocculation efficiency and four inhibition zone diameters against the selected phytopathogens. The results have indicated a great potential of a highly efficient method for removal of the Bacillus bacteria from the cultivation broth using chitosan. The good flocculation efficiency and high precipitate antimicrobial activity against the selected phytopathogens were achieved. It has been shown that multiple flocculation performance parameters were improved, resulting in slightly improved response values.
Food industry effluents represent one of the major concerns when it comes to environmental impact; hence, their valorization through different chemical and biological routes has been suggested as a possible solution. The vast amount of organic and inorganic nutrients present in food industry effluents makes them suitable substrates for microbial growth. This study suggests two valorization routes for whey as dairy industry effluent and flotation wastewater from the wine industry through microbial conversion to biocontrol agents as value-added products. Cultivations of the biocontrol strain Bacillus sp. BioSol021 were performed in a 16 L bioreactor to monitor the bioprocess course and investigate bioprocess kinetics in terms of microbial growth, sugar substrate consumption and surfactin synthesis, as an antimicrobial lipopeptide. The produced biocontrol agents showed high levels of biocontrol activity against mycotoxigenic strains of Aspergillus flavus, followed by a significant reduction of sugar load of the investigated effluents by the producing microorganisms. With proven high potential of whey and winery flotation wastewater to be used as substrates for microbial growth, this study provides grounds for further optimization of the suggested valorization routes, mostly in terms of bioprocess conditions to achieve maximal techno-economical feasibility, energy saving and maximal reduction of effluents’ organic and inorganic burden.
The downstream processing of efficient biomass-based microbial biopesticides is heavily reliant on obtaining the largest concentration of viable cells in the most cost-effective manner. The goal of this research was to assess the ability of chitosan flocculation to recover bacterial Bacillus sp. BioSol021 biomass from the broth after biological treatment of wastewaters from the dairy and wine industries. Second-order factorial design models were used to estimate the effect of chitosan concentration and mixing speed on flocculation efficiency, settling velocity, and antimicrobial activity against Aspergillus flavus, i.e., inhibition zone diameter. Response surface methodology was followed by multi-objective optimization by applying the desirability function (DF) and genetic algorithm (GA). The optimum values for flocculation efficiency, settling velocity, and inhibition zone diameter for cheese whey effluent were 88%, 0.10 mm/s, and 51.00 mm, respectively. In the case of winery flotation effluent, the optimum values were flocculation efficiency 95% and settling velocity 0.05 mm/s, while the inhibition zone diameter was 48.00 mm. These results indicate that utilizing chitosan as a flocculation agent not only fits the criteria for effective downstream processing, but also has a synergistic effect on Bacillus sp. antibacterial activity.
The aim of this study was to examine the potential of the fruit (quince and plum) distillery waste to be used as a substrate for production of Bacillus-based biocontrol agents. Slightly lower extent of in vitro antimicrobial activity against the phytopathogenic Xanthomonas spp. was achieved when using quince and plum distillery waste as a substrate for Bacillus velezensis cultivation in comparison to the synthetic medium (nutrient broth). This study represents a basis for further bioprocess development based on valorization of the alcoholic beverage industry waste through production of biocontrol agents as value-added products, in alignment with the circular economy principles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.