et al. # a comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cutoff values slackened in datasparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. the multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.
A sediment core spanning ∼ 7000 cal yr BP recovered from Stella Lake, a small sub-alpine lake located in Great Basin National Park, Nevada, was analyzed for subfossil chironomids (non-biting midges), diatoms, and organic content (estimated by loss-on-ignition (LOI)). Subfossil chironomid analysis indicates that Stella Lake was characterized by a warm, middle Holocene, followed by a cool “Neoglacial” period, with the last two millennia characterized by a return to warmer conditions. Throughout the majority of the core the Stella Lake diatom-community composition is dominated by small, periphytic taxa which are suggestive of shallow, cool, alkaline, oligotrophic waters with extensive seasonal ice cover. A reconstruction of mean July air temperature (MJAT) was developed by applying a midge-based inference model for MJAT (two-component WA-PLS) consisting of 79 lakes and 54 midge taxa (rjack2 = 0.55, RMSEP = 0.9°C). Comparison of the chironomid-inferred temperature record to existing regional paleoclimate reconstructions suggests that the midge-inferred temperatures correspond well to regional patterns. This multi-proxy record provides valuable insight into regional Holocene climate and environmental conditions by providing a quantitative reconstruction of peak Holocene warmth and aquatic ecosystem response to these changes in the Great Basin, a region projected to experience increased aridity and higher temperatures.
A sediment core representing the past two millennia was recovered from Stella Lake in the Snake Range of the central Great Basin in Nevada. The core was analyzed for sub-fossil chironomids and sediment organic content. A quantitative reconstruction of mean July air temperature (MJAT) was developed using a regional training set and a chironomid-based WA-PLS inference model (r2jack = 0.55, RMSEP = 0.9°C). The chironomid-based MJAT reconstruction suggests that the interval between AD 900 and AD 1300, corresponding to the Medieval Climate Anomaly (MCA), was characterized by MJAT elevated 1.0°C above the subsequent Little Ice Age (LIA), but likely not as warm as recent conditions. Comparison of the Stella Lake temperature reconstruction to previously published paleoclimate records from this region indicates that the temperature fluctuations inferred to have occurred at Stella Lake between AD 900 and AD 1300 correspond to regional records documenting hydroclimate variability during the MCA interval. The Stella Lake record provides evidence that elevated summer temperature contributed to the increased aridity that characterized the western United States during the MCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.