Objectives To analyse the characteristics and predictors of death in hospitalized patients with coronavirus disease 2019 (COVID-19) in Spain. Methods A retrospective observational study was performed of the first consecutive patients hospitalized with COVID-19 confirmed by real-time PCR assay in 127 Spanish centres until 17 March 2020. The follow-up censoring date was 17 April 2020. We collected demographic, clinical, laboratory, treatment and complications data. The primary endpoint was all-cause mortality. Univariable and multivariable Cox regression analyses were performed to identify factors associated with death. Results Of the 4035 patients, male subjects accounted for 2433 (61.0%) of 3987, the median age was 70 years and 2539 (73.8%) of 3439 had one or more comorbidity. The most common symptoms were a history of fever, cough, malaise and dyspnoea. During hospitalization, 1255 (31.5%) of 3979 patients developed acute respiratory distress syndrome, 736 (18.5%) of 3988 were admitted to intensive care units and 619 (15.5%) of 3992 underwent mechanical ventilation. Virus- or host-targeted medications included lopinavir/ritonavir (2820/4005, 70.4%), hydroxychloroquine (2618/3995, 65.5%), interferon beta (1153/3950, 29.2%), corticosteroids (1109/3965, 28.0%) and tocilizumab (373/3951, 9.4%). Overall, 1131 (28%) of 4035 patients died. Mortality increased with age (85.6% occurring in older than 65 years). Seventeen factors were independently associated with an increased hazard of death, the strongest among them including advanced age, liver cirrhosis, low age-adjusted oxygen saturation, higher concentrations of C-reactive protein and lower estimated glomerular filtration rate. Conclusions Our findings provide comprehensive information about characteristics and complications of severe COVID-19, and may help clinicians identify patients at a higher risk of death.
Lipids are indispensable in the SARS-CoV-2 infection process. The clinical significance of plasma lipid profile during COVID-19 has not been rigorously evaluated. We aim to ascertain the association of the plasma lipid profile with SARS-CoV-2 infection clinical evolution. Observational cross-sectional study including 1411 hospitalized patients with COVID-19 and an available standard lipid profile prior (n: 1305) or during hospitalization (n: 297). The usefulness of serum total, LDL, non-HDL and HDL cholesterol to predict the COVID-19 prognosis (severe vs mild) was analysed. Patients with severe COVID-19 evolution had lower HDL cholesterol and higher triglyceride levels before the infection. The lipid profile measured during hospitalization also showed that a severe outcome was associated with lower HDL cholesterol levels and higher triglycerides. HDL cholesterol and triglyceride concentrations were correlated with ferritin and D-dimer levels but not with CRP levels. The presence of atherogenic dyslipidaemia during the infection was strongly and independently associated with a worse COVID-19 infection prognosis. The low HDL cholesterol and high triglyceride concentrations measured before or during hospitalization are strong predictors of a severe course of the disease. The lipid profile should be considered as a sensitive marker of inflammation and should be measured in patients with COVID-19.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The genotype of a single SNP, rs12913832, is the primary predictor of blue and brown eye colours. The genotypes rs12913832:AA and rs12913832:GA are most often observed in individuals with brown eye colours, whereas rs12913832:GG is most often observed in individuals with blue eye colours. However, approximately 3% of Europeans with the rs12913832:GG genotype have brown eye colours. The purpose of the study presented here was to identify variants that explain brown eye colour formation in individuals with the rs12913832:GG genotype. Genes and regulatory regions surrounding SLC24A4, TYRP1, SLC24A5, IRF4, TYR, and SLC45A2, as well as the upstream region of OCA2 within the HERC2 gene were sequenced in a study comprising 40 individuals with the rs12913832:GG genotype. Of these, 24 individuals were considered to have blue eye colours and 16 individuals were considered to have brown eye colours. We identified 211 variants within the SLC24A4, TYRP1, IRF4, and TYR target regions associated with eye colour. Based on in silico analyses of predicted variant effects we recognized four variants, TYRP1 rs35866166:C, TYRP1 rs62538956:C, SLC24A4 rs1289469:C, and TYR rs1126809:G, to be the most promising candidates for explanation of brown eye colour in individuals with the rs12913832:GG genotype. Of the 16 individuals with brown eye colours, 14 individuals had four alleles, whereas the alleles were rare in the blue eyed individuals. rs35866166, rs62538956, and rs1289469 were for the first time found to be associated with pigmentary traits, whilst rs1126809 was previously found to be associated with pigmentary variation. To improve prediction of eye colours we suggest that future eye colour prediction models should include rs35866166, rs62538956, rs1289469, and rs1126809.
Background Cisplatin-based chemotherapy may induce nephrotoxicity. This study presents a random forest predictive model that identifies testicular cancer patients at risk of nephrotoxicity before treatment. Methods Clinical data and DNA from saliva samples were collected for 433 patients. These were genotyped on Illumina HumanOmniExpressExome-8 v1.2 (964 193 markers). Clinical and genomics-based random forest models generated a risk score for each individual to develop nephrotoxicity defined as a 20% drop in isotopic glomerular filtration rate during chemotherapy. The area under the receiver operating characteristic curve was the primary measure to evaluate models. Sensitivity, specificity, and positive and negative predictive values were used to discuss model clinical utility. Results Of 433 patients assessed in this study, 26.8% developed nephrotoxicity after bleomycin-etoposide-cisplatin treatment. Genomic markers found to be associated with nephrotoxicity were located at NAT1, NAT2, and the intergenic region of CNTN6 and CNTN4. These, in addition to previously associated markers located at ERCC1, ERCC2, and SLC22A2, were found to improve predictions in a clinical feature–trained random forest model. Using only clinical data for training the model, an area under the receiver operating characteristic curve of 0.635 (95% confidence interval [CI] = 0.629 to 0.640) was obtained. Retraining the classifier by adding genomics markers increased performance to 0.731 (95% CI = 0.726 to 0.736) and 0.692 (95% CI = 0.688 to 0.696) on the holdout set. Conclusions A clinical and genomics-based machine learning algorithm improved the ability to identify patients at risk of nephrotoxicity compared with using clinical variables alone. Novel genetics associations with cisplatin-induced nephrotoxicity were found for NAT1, NAT2, CNTN6, and CNTN4 that require replication in larger studies before application to clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.