Here, we have demonstrated strong size dependency of quasi-equilibrium and nonequilibrium carrier and photon dynamics in InGaN/GaN single nanowalls using photoluminescence and transient absorption spectroscopy. We demonstrate that two-dimensional carrier confinement, strain relaxation, and modified density of states lead to a reduced Stokes shift, smaller full width at half-maxima, increased exciton binding energy, and reduced nonradiative recombination. The ultrafast transient spectroscopy shows that carrier capture is a two-step process dominated by optical phonons and carrier-carrier scattering in succession. The carrier capture is a strongly size-dependent process and becomes slower due to modulation of the density of available states for progressively decreasing nanowall sizes. The slowest process is the electron-hole recombination, which is also extremely size-dependent and the rate increases by almost an order of magnitude in comparison to that of quantum-well structures. Electron-hole wave function overlap and modified density of states are among the key aspects in determining all the properties of these structures.
We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperature variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm2.
We have demonstrated an electrically injected ultra-low threshold (8.9 nA) room temperature InGaN/GaN based lateral nanowire laser. The nanowires are triangular in shape and survived naturally after etching using boiling phosphoric acid. A polymethyl methacrylate (PMMA) and air dielectric distributed mirror provide an optical feedback, which together with one-dimensional density of states cause ultra-low threshold lasing. Finite difference eigen-mode (FDE) simulation shows that triangular nanowire cavity supports single dominant mode similar to TE01 that of a corresponding rectangular cavity with a confinement factor of 0.18.
The effect of polarization modulation on GaN-based double-barrier resonant tunneling diodes is theoretically investigated. The polarization field is shown to improve the performance of these devices by increasing the peak current, peak-to-valley ratio, and negative differential conductance. The high sensitivity of the quantum-well bound energy state with the applied bias explains the observed characteristics. We have further demonstrated that a thin In0.1Ga0.9N layer can significantly improve the performance of the devices by introducing an additional polarization field beyond the second barrier, which reduces the device series resistance and increases the effective second barrier height and width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.