Citation: Johnson AA, Bachman LA, Gilles BJ, et al. Autosomal recessive bestrophinopathy is not associated with the loss of bestrophin-1 anion channel function in a patient with a novel BEST1 mutation. Invest Ophthalmol Vis Sci. 2015;56:4619-4630. DOI:10.1167/iovs.15-16910 PURPOSE. Mutations in BEST1, encoding bestrophin-1 (Best1), cause autosomal recessive bestrophinopathy (ARB). Encoding bestrophin-1 is a pentameric anion channel localized to the basolateral plasma membrane of the RPE. Here, we characterize the effects of the mutations R141H (CGC > CAC) and I366fsX18 (c.1098_1100þ7del), identified in a patient in our practice, on Best1 trafficking, oligomerization, and channel activity. METHODS. Currents of ClÀ were assessed in transfected HEK293 cells using whole-cell patch clamp. Best1 localization was assessed by confocal microscopy in differentiated, humaninduced pluripotent stem cell-derived RPE (iPSC-RPE) cells following expression of mutants via adenovirus-mediated gene transfer. Oligomerization was evaluated by coimmunoprecipitation in iPSC-RPE and MDCK cells. À currents, this indicates that ARB in this patient is not caused by a loss of channel activity. Moreover, Best1 I366fsX18 differs from Best1 in that it lacks most of the cytosolic C-terminal domain, suggesting that the loss of this region contributes significantly to the pathogenesis of ARB in this patient. RESULTS. Compared to
PurposeThe mutation R345W in EFEMP1 (fibulin-3) causes macular degeneration. This study sought to determine whether proteoglycan content and diffusion across Bruch's membrane are altered in Efemp1ki/ki mice carrying this mutation or in Efemp1−/− mice.MethodsProteoglycans in mouse Bruch's membranes were stained with Cupromeronic Blue (CB). Heparan sulfated proteoglycan (HSPG) and chondroitin/dermatan sulfate proteoglycan (C/DSPG) distributions were visualized following treatments with chondroitinase ABC (C-ABC) or nitrous acid. Total sulfated glycosaminoglycans (sGAGs) in Bruch's membrane/choroid (BrM/Ch) were measured with dimethylmethylene blue (DMMB). Matrix metalloprotease (MMP)-2, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-3 were examined by immunofluorescence and quantified using Image J. Molecules with different Stokes radius (Rs) were allowed simultaneously to diffuse through mouse BrM/Ch mounted in a modified Ussing chamber. Samples were quantified using gel exclusion chromatography.ResultsHSPGs and C/DSPGs were markedly increased in Efemp1ki/ki Bruch's membrane, and MMP-2 and MMP-9 were decreased, but TIMP-3 was increased. Diffusion across Efemp1ki/ki Bruch's membrane was impaired. In contrast, the proteoglycan amount in Efemp1−/− Bruch's membrane was not significantly different, but the size of proteoglycans was much larger. MMP-2, MMP-3, and TIMP-3 levels were similar to that of Efemp1+/+ mice, but they were localized diffusely in retinal pigment epithelium (RPE) cells instead of Bruch's membrane. Diffusion across Efemp1−/− Bruch's membrane was enhanced.ConclusionsMutant fibulin-3 causes proteoglycan accumulation, reduction of MMP-2 and MMP-9, but increase of TIMP-3, and impairs diffusion across Bruch's membrane. Fibulin-3 ablation results in altered sizes of proteoglycans, altered distributions of MMP-2, MMP-9, and TIMP-3, and enhances diffusion across Bruch's membrane.
S. mediterranea have the ability to generate functional eyes in the absence of a wound healing response. This ability requires the expression of ovo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.