Continuous increments in world population demands transportation with essential vehicle facilities and directly effect on road traffic volume or congestion, mostly in metropolitan cities, and thus it needs significant investigation, analysis, and maintenance. In these regards, an Intelligent Traffic Management System (ITMS) with a Deep-Neuro-Fuzzy model was proposed and implemented. Dijkstra algorithm is used to select optimum path from source to destination on the basis of calculated road segment weights from Deep-Neuro-Fuzzy framework. However, Deep-Neuro-Fuzzy framework needs some comprehensive analysis, other means some simulation or emulation, and etc, to proof the efficiency and workability of the model. In this paper, we are going to explore the Deep-Neuro-Fuzzy model in pragmatic style with an open-source traffic simulation model (SUMO) and helps to explore traffic-related issues including route choice, simulate traffic light or vehicular communication, etc in our ITMS. In addition, a new GUI is developed to control the simulation input attributes and presents the feedbacks into the traffic flow in SUMO environment. Results highlight that the proposed SUMO model can realistically simulate ITMS based on the road segment weights from Deep-Neuro-Fuzzy model. Different built-in routing algorithms are also used to proof the workability of this model.
Intelligence traffic management system (ITMS) provides effective and efficient solutions toward the road traffic management and decision-making problems, and thus helps to reduce fuel consumption and emission of greenhouse gases. Software-based real-time bi-directional TMS with a neural network was proposed and implemented. The proposed TMS solves a decision problem, dynamic road weights calculation, using different environmental, road and vehicle related decision attributes. In addition, the development of the real-time operational models as well as their solving challenges has increased in a rapid manner. Therefore, the authors integrate the design and development of a neural-based complete real-time operational ITMS, with the combination of software modules including traffic monitoring, road weight updating, forecasting, and optimum route planning decision. Collecting, extracting the insights and inherit meaning, and modeling the tremendous amount of continuous data is a challenging task. A discussion is also included with the future improvements on ITMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.