The functional dynamics exhibited by cell collectives are fascinating examples of robust, synchronized, collective behavior in spatially extended biological systems. To investigate the roles of local cellular dynamics and interaction strength in the spatiotemporal dynamics of cell collectives of different sizes, we study a model system consisting of a ring of coupled cells incorporating a three-step biochemical pathway of regulated activator-inhibitor reactions. The isolated individual cells display very complex dynamics as a result of the nonlinear interactions common in cellular processes. On coupling the cells to nearest neighbors, through diffusion of the pathway end product, the ring of cells yields a host of interesting and unusual dynamical features such as, suppression of chaos, phase synchronization, traveling waves, and intermittency, for varying interaction strengths and system sizes. But robust complete synchronization can be induced in these coupled cells with a small degree of random coupling among them even where regular coupling yielded only intermittent synchronization. Our studies indicate that robustness in synchronized functional dynamics in tissues and cell populations in nature can be ensured by a few transient random connections among the cells. Such connections are being discovered only recently in real cellular systems.
Fine magnetic particles (sizeffi100 Å ) belonging to the series Zn x Fe 1Àx Fe 2 O 4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically. r
Ferrofluids belonging to the series, Ni x Fe 1−x Fe 2 O 4 and Zn x Fe 1−x Fe 2 O 4 , were synthesized using cold co-precipitation. Liquid films of these ferrofluids were prepared by encapsulating the ferrofluids in between two optically smooth and ultrasonically cleaned glass plates. Magnetic field induced laser transmission through these ferrofluid films has been investigated. Magnetic field values can be calibrated in terms of output laser power in the low field region in which the variation is linear. This set up can be used as a cheap optical gaussmeter in the low field regime. Using the same set-up, the saturation magnetization of the sample used can also be calculated with a sample that is pre-characterized. Hence both magnetization of the sample, as well as applied magnetic field can be sensed and calculated with a precalibrated sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.