ABSTRACT. Proximate composition of the three green seaweeds viz., Chaetomorpha aerea, Enteromorpha intestinalis, Enteromorpha compressa one brown seaweed Dictyota dichotoma and one red seaweed Gracilaria corticata was investigated by determination of protein, carbohydrates, lipid, moisture and ash content. In the present study, the total protein was recarded upper most in E. intestinalis and bare minimum in E. compressa. The maximum carbohydrates recorded in C. aerea and minimum in G. corticata. The lipid content was acquired upper limit in E. compressa and least in C. aerea. The ash and moisture content in following of 5 different seaweeds are as follows: 7.45mg/g, 3.91mg/g were recorded in the C. aerea, 8.52mg/g, 3.42mg/g in the E. intestinalis, 8.58mg/g, 3.75mg/g in the E. compressa, 9.47mg/g, 4.23mg/g in the D. dichotoma and 6.95mg/g, 3.98mg/g in G. corticata. The proximate composition of 5 different seaweed species exhibited high nutritional value for human consumption.
Regulation and production of Fibrinolytic enzymes from bacterial sources especially from Bacillus strains has taken a leading role in the medical sciences for the treatment of cardiovascular disorders as it removes thrombus or clots adding to its significant role in curing human health issues saving millions. Significant progress has been made during the last few years on the studies of fibrinolytic enzymes in identifying, cloning, purification, characterization and overproduction of these for commercialization in medical sciences and in fields like detergents development. Production of fibrinolytic enzyme from Bacillus circulans was done using Nutrient broth medium. In addition, a strong fibrinolytic enzyme was purified from the cultivation media. The purified enzyme was almost homogeneous with other species of same genus, as examined by SDS−PAGE and sephadex G-75 column chromatography. The enzyme had an optimal pH of 7-12, an optimal temperature of 50 °C, for fibrin hydrolysis. The molecular mass estimated by gel filtration was 24 to36 KDa. Further studies for characterization and structural elucidation are necessary for their medicinal applications and molecular biological characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.