Duck hepatitis A virus (DHAV) is the most common aetiologic agent of duck virus hepatitis (DVH), causing substantial economic losses in the duck industry worldwide. In China, officially approved DHAV-1 live-attenuated vaccines have been used widely to vaccinate breeder ducks since 2013. However, following the reports of DVH outbreaks, it has become necessary to assess the epidemiological situation of this virus in China. We conducted molecular epidemiological analyses of 32 DHAV field isolates while analysing the samples from ducks suspected of having hepatitis collected from commercial duck farms in China between May 2010 and December 2015. Considerable changes were observed in the epidemiology of DHAV-1 and DHAV-3 in China over time. A higher number of DHAV-1 strains were isolated during 2010-2012, coinciding with the widespread use of officially approved DHAV-1 live vaccine strains beginning in 2013. In contrast, a higher rate of DHAV-3 causing DHAV infections was observed between 2013 and 2015. Phylogenetic analyses based on the full-length VP1 gene were performed on these field isolates and using reference strains available in GenBank. DHAV-1 field isolates were evaluated in two groups: one group closely related to prototype strains and circulating in China between 2010 and 2012 and another group exhibiting genetic and serological differences from prototype strains. All DHAV-3 strains isolated in this study were grouped as monophyletic, which has become the predominant viral type, particularly in Shandong and Sichuan provinces, since 2013. In conclusion, these data provide updated information on the genetic and serological diversity of DHAV-1 and DHAV-3, and our findings may serve as a foundation for the prevention of, and vaccine development for, DHAV in China.
ABSTRACT. The US2 protein has been reported to contribute to duck enteritis virus (DEV) infection; however, its kinetics and localization during infection, and whether it is a component of virion, have not been previously reported. To elucidate the function of DEV US2, US2 was amplified by polymerase chain reaction (PCR) and inserted into pET-32a(+); this was expressed, the recombinant US2 protein was purified, and a polyclonal antibody generated. In addition, the kinetics and localization of the US2 gene and protein were determined by quantitative real-time fluorescent PCR, ganciclovir (GCV), and cycloheximide (CHX) treatment, westernblot, and indirect immunofluorescence assay. The packaging of US2 into DEV virions was revealed by a protease protection assay. US2 was found to be transcribed 24 h post-infection (pi) and peaked at 72 h pi; the US2 protein was detected 48 h pi, except in the presence of GCV or CHX. US2 was packed into virions and also localized to the plasma membrane and 13779-13790 (2015) cytoplasm in infected cells. The results showed that the DEV US2 is a late gene, and that its encoding protein could be a tegument component localized mainly in the cytoplasm. This study provides useful data for the further analysis of DEV US2, including an explanation for the genetic conservation among alphaherpesviruses.
The tripartite motif-containing proteins (TRIMs) comprise a large family of proteins with over 70 members in humans. Recent studies have shown that TRIMs play unexpected roles in the antiviral immune responses to infections by HIV, MLV, EMCV, AIV and other viruses. There are two mechanisms used by TRIMs in the inhibition of virus infections: (1) TRIMs target the produced viruses for ubiquitination, which induces proteasome-dependent degradation, or they interact with host proteins to inhibit viral infection in various periods of the viral life cycle. (2) TRIMs activate innate immune signalling pathways, such as RLR and TLR, which induce IFN production. In this study, we will review recent studies regarding the means by which TRIMs function as inhibitors in viral infection through the mechanisms described above.
Ubiquitin-specific protease 18 (USP18) is known as an inhibition factor and has been associated with the innate immune response to pathogens. USP18 is the only deconjugating protease with specificity for interferon-stimulated gene 15 (ISG15), which is supposed to be missing in birds. To analyze the efficacy of goose USP18 (goUSP18) against Tembusu virus (TMUV) infection, we first cloned USP18 homologous cDNA from TMUV infected geese. The coding sequence was 1131 bp, and the deduced amino acid sequence shared conserved motifs with its homologues. Tissue-specific expression has shown that goUSP18 transcripts are strongly expressed in the spleen and liver of adult geese, as well as in the pancreas of goslings. Moreover, the goUSP18 transcripts were induced by goose interferons (goIFN) in goose embryo fibroblasts (GEF) and by TLR ligands in peripheral blood mononuclear cells (PBMC). Notably, goUSP18 transcripts were highly up-regulated by TMUV infection compared to the basal level in uninfected birds. Taken together, these results suggested that goUSP18 was involved in host innate immunity against TMUV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.