REIC/Dickkopf-3 (Dkk-3), a tumor suppressor gene, has been investigated in gene therapy studies. Our previous study suggested that REIC/Dkk-3-induced apoptosis mainly resulted from phosphorylation of c-Jun-NH 2 kinase (JNK) in prostate cancer cells. However, the precise mechanisms, especially the molecular mechanisms regulating JNK phosphorylation, remain unclear. In this study, we investigated the mechanisms participating in JNK phosphorylation in the context of a refractory cancer disease, malignant mesothelioma (MM). Adenovirus-mediated overexpression of REIC/Dkk-3 induced apoptosis mainly through JNK activation in immortalized MM cells (211H cells). Interestingly, transcriptional downregulation of inhibition of differentiation-1 (Id-1) was detected in REIC/Dkk-3-overexpressed 211H cells. Moreover, restoration of Id-1 expression antagonized REIC/Dkk-3-induced JNK phosphorylation and apoptosis. Mutagenesis experiments with the 2.1-kb human Id-1 promoter revealed that activating transcription factor 3 (ATF3) and Smad interaction, with their respective binding motifs, was essential for REIC/Dkk-3-mediated suppression of Id-1 promoter activity. ATF3 activation was probably induced by endoplasmic reticulum stress. Finally, we showed strong antitumor effects from REIC/Dkk-3 gene transfer into the pleural cavity in an orthotopic MM mouse model. Relative to control tumor tissue, REIC/Dkk-3-treated tumor tissue showed downregulated expression of Id-1 mRNA, enhanced expression of phosphorylated JNK, and an increased number of apoptotic cells. In summary, we first showed that both ATF3 and Smad were crucially and synergistically involved in down-regulation of Id-1, which regulated JNK phosphorylation in REIC/Dkk-3-induced apoptosis. Thus, gene therapy with REIC/Dkk-3 may be a promising therapeutic tool for MM. [Cancer Res 2008;68(20):8333-41]
We previously showed that the tumor suppressor gene REIC/ Dkk-3, when overexpressed by an adenovirus (Ad-REIC), exhibited a dramatic therapeutic effect on human cancers through a mechanism triggered by endoplasmic reticulum stress. Adenovirus vectors show no target cell specificity and thus may elicit unfavorable side effects through infection of normal cells even upon intra-tumoral injection. In this study, we examined possible effects of Ad-REIC on normal cells. We found that infection of normal human fibroblasts (NHF) did not cause apoptosis but induced production of interleukin (IL)-7. The induction was triggered by endoplasmic reticulum stress and mediated through IRE1␣, ASK1, p38, and IRF-1. When Ad-REIC-infected NHF were transplanted in a mixture with untreated human prostate cancer cells, the growth of the cancer cells was significantly suppressed. Injection of an IL-7 antibody partially abrogated the suppressive effect of Ad-REIC-infected NHF. These results indicate that Ad-REIC has another arm against human cancer, an indirect host-mediated effect because of overproduction of IL-7 by mis-targeted NHF, in addition to its direct effect on cancer cells.Cancer cells, like normal cells, cannot be free from regulation by other cells in the body (1). The microenvironment can exert both promotive and suppressive effects on malignant cells (2). The embryonic environment has been shown to suppress malignant phenotypes (3, 4), and this was recently indicated to be due to suppression of Nodal function by Lefty (5). Cells comprising cancer stroma in adult tissues are also involved in tumor suppression (6, 7). Mobilization of such potential tumor-suppressive effects of the microenvironment would provide an additional arm for cancer therapy (8).Adenovirus vectors combined with appropriate cargo genes have great potential in cancer gene therapy because of their high infection efficiency and marginal genotoxicity (9). However, they show no target cell specificity and thus may also infect normal cells present in the surroundings of cancer cells. Provided that the interaction between cancer cells and normal cells is relevant to progression/suppression of cancer, it is critically important to understand not only cell autonomous phenomena in individual cell types infected by a therapeutic virus vector but also potential effects of the therapeutic virus vector on the composite system of interacting cell populations.We have been studying the possible utility of an adenovirus vector carrying the tumor suppressor gene REIC/Dkk-3 (Ad-REIC) for gene therapy against human cancer. REIC/Dkk-3 was first identified as a gene that was down-regulated in association with immortalization of normal human fibroblasts (NHF) 2 (10). Expression of REIC/Dkk-3 gene was shown to be reduced in many human cancer cells and tissues, including prostate cancer, renal clear cell carcinoma, testicular cancer, and non-small cell lung cancer (11-14), probably due to hypermethylation of the promoter (15). A single injection of Ad-REIC into tumors formed by...
Human testicular cancer is very sensitive to chemotherapy and radiation therapy and is regarded as a curable cancer. The cancer prevails in the young reproductive generation and testicular dysfunction is often observed as a side effect, remaining a serious challenge. In the present study, we examined the potential utility of REIC/Dkk-3-based gene therapy against human testicular cancer. Expression of REIC/Dkk-3 was reduced in all of the human seminoma and non-seminomatous germ cell tumor tissues. Overexpression of REIC/Dkk-3 using an adenovirus vector (Ad-REIC) induced apoptosis in a testicular germ cell cancer cell line NCCIT but not in normal human fibroblasts. c-Jun terminal kinase (JNK) was activated by Ad-REIC and the induction of apoptosis was abrogated by a JNK inhibitor. A single intratumoral injection of Ad-REIC markedly inhibited the tumorigenic growth of NCCIT cells in nude mice. These results indicate that Ad-REIC may lead to developing less insulting and non-genotoxic therapeutic measures against human testicular cancer.
We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.