Deficiency of ADAMTS13 is found in patients with thrombotic thrombocytopenic purpura (TTP), and the genetic defects in the ADAMTS13 gene or the autoantibody against ADAMTS13 is thought to be responsible for the development of TTP. The clinical correlation and mechanisms of secondary ADAMTS13 deficiency in other disease states were investigated. In addition to TTP, ADAMTS13 levels were severely decreased in patients with sepsis-induced disseminated intravascular coagulation (DIC). The incidence of acute renal failure and serum creatinine levels in patients with ADAMTS13 activity levels lower than 20% (incidence, 41.2%; creatinine, 160 ؎ 150 M [1.81 ؎ 1.70 mg/dL]) (P < .05) were significantly higher than they were in patients with ADAMTS13 activity levels higher than 20% (incidence, 15.4%; creatinine, 84 ؎ 67 M [0.95 ؎ 0.76 mg/dL]) (P < .01). Additionally, unusually large von Willebrand factor multimers were detected in 26 (51.0%) of 51 patients with ADAMTS13 activity levels lower than 20%. Lower molecular weight forms of ADAMTS13 were found in the plasma of patients with sepsis-induced DIC, suggesting that the deficiency of ADAMTS13 was partially caused by its cleavage by proteases in addition to decreased synthesis in the liver. These data suggested that severe secondary ADAMTS13 deficiency can be associated with sepsis-induced DIC and may contribute to the development of renal failure. (Blood. 2006;107: 528-534)
After the first attachment of virus to the cell surface through a primary receptor, efficient entry of virus requires the presence of a coreceptor. For adeno-associated virus type 2 (AAV2) infection, heparan sulfate proteoglycan is supposed as the primary receptor, and ␣v5 integrin and FGFR1 are reported to act as coreceptors. In this study, we were able to demonstrate that hepatocyte growth factor receptor, c-Met, is also a coreceptor for AAV2 infection. AAV2-mediated transgene analyses revealed that c-Met expression significantly up-regulated transgene expression without increasing AAV2 cell binding. Moreover, a viral overlay assay elucidated the physical interaction between AAV2 and the  subunit of c-Met. These data suggest that c-Met plays the role of coreceptor for AAV2 infection by facilitating AAV2 internalization into the cytoplasm.
REIC/Dickkopf-3 (Dkk-3), a tumor suppressor gene, has been investigated in gene therapy studies. Our previous study suggested that REIC/Dkk-3-induced apoptosis mainly resulted from phosphorylation of c-Jun-NH 2 kinase (JNK) in prostate cancer cells. However, the precise mechanisms, especially the molecular mechanisms regulating JNK phosphorylation, remain unclear. In this study, we investigated the mechanisms participating in JNK phosphorylation in the context of a refractory cancer disease, malignant mesothelioma (MM). Adenovirus-mediated overexpression of REIC/Dkk-3 induced apoptosis mainly through JNK activation in immortalized MM cells (211H cells). Interestingly, transcriptional downregulation of inhibition of differentiation-1 (Id-1) was detected in REIC/Dkk-3-overexpressed 211H cells. Moreover, restoration of Id-1 expression antagonized REIC/Dkk-3-induced JNK phosphorylation and apoptosis. Mutagenesis experiments with the 2.1-kb human Id-1 promoter revealed that activating transcription factor 3 (ATF3) and Smad interaction, with their respective binding motifs, was essential for REIC/Dkk-3-mediated suppression of Id-1 promoter activity. ATF3 activation was probably induced by endoplasmic reticulum stress. Finally, we showed strong antitumor effects from REIC/Dkk-3 gene transfer into the pleural cavity in an orthotopic MM mouse model. Relative to control tumor tissue, REIC/Dkk-3-treated tumor tissue showed downregulated expression of Id-1 mRNA, enhanced expression of phosphorylated JNK, and an increased number of apoptotic cells. In summary, we first showed that both ATF3 and Smad were crucially and synergistically involved in down-regulation of Id-1, which regulated JNK phosphorylation in REIC/Dkk-3-induced apoptosis. Thus, gene therapy with REIC/Dkk-3 may be a promising therapeutic tool for MM. [Cancer Res 2008;68(20):8333-41]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.