A fundamental requirement for the development of advanced electronic device architectures based on graphene nanoribbon (GNR) technology is the ability to modulate the band structure and charge carrier concentration by substituting specific carbon atoms in the hexagonal graphene lattice with p- or n-type dopant heteroatoms. Here we report the atomically precise introduction of group III dopant atoms into bottom-up fabricated semiconducting armchair GNRs (AGNRs). Trigonal-planar B atoms along the backbone of the GNR share an empty p-orbital with the extended π-band for dopant functionality. Scanning tunneling microscopy (STM) topography reveals a characteristic modulation of the local density of states along the backbone of the GNR that is superimposable with the expected position and concentration of dopant B atoms. First-principles calculations support the experimental findings and provide additional insight into the band structure of B-doped 7-AGNRs.
Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO reduction overpotential by hundreds of millivolts (catalytic onset > -0.2 V versus reversible hydrogen electrode (RHE)), increase the Faraday efficiency (>90%), markedly improve stability (catalytic performance sustained over >24 h), and increase the total catalytic output (>100-fold improvement over traditional amorphous carbon AuNP supports). The inherent structural and electronic tunability of bottom-up synthesized GNR-AuNP composites affords an unrivaled degree of control over the catalytic environment, providing a means for such profound effects as shifting the rate-determining step in the electrocatalytic reduction of CO to CO, and thereby altering the electrocatalytic mechanism at the nanoparticle surface.
TitleAtomically precise graphene nanoribbon heterojunctions from a single molecular precursor AbstractThe rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR)heterojunctions represents a key enabling technology for the design of nanoscale electronic devices. Synthetic strategies have thus far relied on the random copolymerization of two electronically distinctive molecular precursors to yield a segmented band structure within a GNR. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through a late-stage functionalization of chevron GNRs obtained from a single precursor that features fluorenone substituents along the convex edges. Excitation of the GNR induces cleavage of sacrificial carbonyl groups at the GNR edge, thus giving rise to atomically well-defined heterojunctions comprised of segments of fluorenone GNR and unfunctionalized chevron GNR. The structure of fluorenone/unfunctionalized GNR heterojunctions was characterized using bond-resolved STM (BRSTM) which enables chemical bonds to be imaged via STM at T = 4.5 K. Scanning tunneling spectroscopy (STS) reveals that the band alignment across the interface yields a staggered gap Type II heterojunction and is consistent with first-principles calculations. Detailed spectroscopic and theoretical studies reveal that the band realignment at the interface between fluorenone and unfunctionalized chevron GNRs proceeds over a distance less than 1nm, leading to extremely large effective fields.
Atomically precise engineering of defined segments within individual graphene nanoribbons (GNRs) represents a key enabling technology for the development of advanced functional device architectures. Here, the bottom-up synthesis of chevron GNRs decorated with reactive functional groups derived from 9-methyl-9H-carbazole is reported. Scanning tunneling and non-contact atomic force microscopy reveal that a thermal activation of GNRs induces the rearrangement of the electron-rich carbazole into an electron-deficient phenanthridine. The selective chemical edge-reconstruction of carbazole-substituted chevron GNRs represents a practical strategy for the controlled fabrication of spatially defined GNR heterostructures from a single molecular precursor.
Molybdenum carbyne complexes [RC≡Mo(OC(CH3)(CF3)2)3] featuring a mesityl (R = Mes) or an ethyl (R = Et) substituent initiate the living ring-opening alkyne metathesis polymerization of the strained cyclic alkyne, 5,6,11,12-tetradehydrobenzo[a,e][8]annulene, to yield fully conjugated poly(o-phenylene ethynylene). The difference in the steric demand of the polymer end-group (Mes vs Et) transferred during the initiation step determines the topology of the resulting polymer chain. While [MesC≡Mo(OC(CH3)(CF3)2)3] exclusively yields linear poly(o-phenylene ethynylene), polymerization initiated by [EtC≡Mo(OC(CH3)(CF3)2)3] results in cyclic polymers ranging in size from n = 5 to 20 monomer units. Kinetic studies reveal that the propagating species emerging from [EtC≡Mo(OC(CH3)(CF3)2)3] undergoes a highly selective intramolecular backbiting into the butynyl end-group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.