Trophoblast cell invasion into the uterine wall is characteristic of hemochorial placentation. In this report, we examine trophoblast cell invasion in the rat and mouse, the endocrine phenotype of invasive trophoblast cells, and aspects of the regulation of trophoblast cell invasion. In the rat, trophoblast cells exhibit extensive interstitial and endovascular invasion. Trophoblast cells penetrate through the decidua and well into the metrial gland, where they form intimate associations with the vasculature. Trophoblast cell invasion in the mouse is primarily interstitial and is restricted to the mesometrial decidua. Both interstitial and endovascular rat trophoblast cells synthesize a unique set of prolactin (PRL)-like hormones/cytokines, PRL-like protein-A (PLP-A), PLP-L, and PLP-M. Invading mouse trophoblast cells also possess endocrine activities, including the expression of PLP-M and PLP-N. The trafficking of natural killer (NK) cells and trophoblast cells within the mesometrial uterus is reciprocal in both the rat and mouse. As NK cells disappear from the mesometrial compartment, a subpopulation of trophoblast cells exit the chorioallantoic placenta and enter the decidua. Furthermore, the onset of interstitial trophoblast cell invasion is accelerated in mice with a genetic deficiency of NK cells, Tg epsilon 26 mice, implicating a possible regulatory role of NK cells in trophoblast cell invasion. Additionally, the NK cell product, interferon-gamma (IFNgamma), inhibits trophoblast cell outgrowth, and trophoblast cell invasion is accelerated in mice with a genetic deficiency in the IFNgamma or the IFNgamma receptor. In summary, trophoblast cells invade the uterine wall during the last week of gestation in the rat and mouse and possess a unique endocrine phenotype, and factors present in the uterine mesometrial compartment modulate their invasive behavior.
In the mouse, there is a large family of paralogous genes closely related to PRL. The objective of this report was to investigate the organization of the mouse PRL gene family locus. PRL family genes reside on chromosome 13 of the mouse genome. The PRL gene family members were localized to a series of overlapping bacterial artificial chromosome clones and arranged based on structural relationships. Additionally, several new members of the PRL gene family were identified. Placental lactogen I (PL-I) was found to be encoded by three closely related (>98% exon sequence identity) contiguous genes (termed: PL-Ialpha, PL-Ibeta, and PL-Igamma). Two previously unidentified mouse orthologs for members of the rat PRL family, PRL-like protein-I (PLP-I) and PLP-K were discovered, as were two new members of the PLP-C subfamily, PLP-Cgamma and PLP-Cdelta, and two new entirely unique members of the PRL family, PLP-N and PLP-O. Amino acid sequences predicted from the latter two genes most closely resembled proliferin-related protein. Each of the nine newly discovered genes is expressed in trophoblast cells of the mouse placenta in a gestationally specific pattern. In summary, elucidation of the mouse PRL gene family locus provides new insights into the expansion of the mouse PRL family and new tools for studying the genetics and biology of its members.
Intrauterine growth restriction (IUGR) is a major cause of perinatal death and neonatal morbidity and mortality.
SummaryThe rat is an important model for studying the biology of trophoblast-uterine development. This chapter describes methods that are useful for the characterization of the rat uteroplacental compartment.
Successful species develop strategies to optimize their reproductive performance. This optimization likely includes the evolution of genes that specifically permit reproduction in physiologically challenging conditions. The prolactin (PRL) family gene cluster is one of 25 mouse-specific gene clusters, the majority of which are associated with reproduction. A prevailing theme characterizing the PRL family is its connection with pregnancy and mechanisms controlling viviparity. PRL-like protein A (PLP-A) is one of 26 genes located within the PRL family locus. It is a nonclassical member of the PRL family (e.g., PLP-A does not use the PRL receptor) produced by trophoblast cells of the chorioallantoic placenta and acts on uterine natural killer cells. In this report, the biology of PLP-A has been investigated by generating mice with a PLP-A null mutation. Under standardized animal husbandry conditions, PLP-A possesses modest effects on reproductive performance. However, this same gene is critical for reproduction when mice are exposed to a physiological stressor. Wild-type mice exposed to hypobaric hypoxia during gestation readily adapt and maintain their pregnancies, whereas PLP-A null mutant mice fail to adapt, resulting in pregnancy failure. PLP-A contributes to hypoxia-induced adaptations critical to hemochorial placentation and thus nutrient flow to extraembryonic and embryonic tissues. The findings provide insights into speciesspecific reproductive adaptations.natural killer cell ͉ placenta ͉ prolactin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.