Information acquisition in underwater sensor networks is usually limited by energy and bandwidth. Fortunately, the received signal can be represented sparsely on some basis. Therefore, a compressed sensing method can be used to collect the information by selecting a subset of the total sensor nodes. The conventional compressed sensing scheme is to select some sensor nodes randomly. The network lifetime and the correlation of sensor nodes are not considered. Therefore, it is significant to adjust the sensor node selection scheme according to these factors for the superior performance. In this paper, an optimized sensor node selection scheme is given based on Bayesian estimation theory. The advantage of Bayesian estimation is to give the closed-form expression of posterior density function and error covariance matrix. The proposed optimization problem first aims at minimizing the mean square error (MSE) of Bayesian estimation based on a given error covariance matrix. Then, the non-convex optimization problem is transformed as a convex semidefinite programming problem by relaxing the constraints. Finally, the residual energy of each sensor node is taken into account as a constraint in the optimization problem. Simulation results demonstrate that the proposed scheme has better performance than a conventional compressed sensing scheme.
This paper investigates the admission control problem on the satellite multi-beam networks with non-orthogonal multiple access (NOMA). The goal is to maximize the number of supported users on the premise of ensuring the quality of service (QoS) by optimizing the subchannel and power allocation. We provide the system model and then formulate the admission control problem as a mixed integer non-convex optimization problem. The non-convexity and existence of integer variable make the optimal solution difficult to get. Therefore, we propose a joint subchannel matching and power allocation algorithm to obtain the suboptimal solution so as to reduce the computation complexity. The proposed algorithm can be used for both NOMA and orthogonal frequency division multiplexing access (OFDMA). Specifically, the subchannel matching problem is solved by a two-stage matching process where users are accessed to subchannel dynamically. The power allocation problem is modeled as a super-modular game where the existence and uniqueness of Nash equilibrium (NE) are analyzed. Moreover, an iterative power allocation algorithm is proposed based on the NE searching method. Finally, simulation results are provided for demonstrating the effectiveness and feasibility of the proposed algorithm. INDEX TERMS Admission control, matching theory, multi-beam satellite system, non-orthogonal multiple access, subchannel, power allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.