We consider the problem of frequency domain kernel estimation using random multi-tone (harmonic) excitation for 2nd-order Volterra models. The basic approach is based on least squares minimization of model output error, and results for the Volterra kernel estimations with random multi-tone inputs and random Gaussian input are compared. We show that kernel estimation with multi-tones are very accurate and efficient compared to the latter. As an illustration, the proposed method is applied to a discrete input–output system obtained from the numerical simulation of a representative hydrodynamic system for modeling semiconductor device transport. We also consider the effect of noise in the kernel estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.