Summary
Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
In Figure S4A of the above article, the authors inadvertently inserted an incorrect GAPDH panel. A revised figure, including the correct GAPDH panel, is now shown below. In addition, as the analysis shows effects of different siRNAs on the level of H2Bub1, the authors believe that the total H2B panel (identical to the previous figure) is the more appropriate control. The authors apologize for any confusion that this may have caused.
Background: Biological signaling pathways that govern cellular physiology form an intricate web of tightly regulated interlocking processes. Data on these regulatory networks are accumulating at an unprecedented pace. The assimilation, visualization and interpretation of these data have become a major challenge in biological research, and once met, will greatly boost our ability to understand cell functioning on a systems level.
Recent studies have shown a surprising phenomenon, whereby orthologous regulatory regions from different species drive similar expression levels despite being highly diverged in sequence. Here, we investigated this phenomenon by genomically integrating hundreds of ribosomal protein (RP) promoters from nine different yeast species into S. cerevisiae and accurately measuring their activity. We found that orthologous RP promoters have extreme expression conservation even across evolutionarily distinct yeast species. Notably, our measurements reveal two distinct mechanisms that underlie this conservation and which act in different regions of the promoter. In the core promoter region, we found compensatory changes, whereby effects of sequence variations in one part of the core promoter were reversed by variations in another part. In contrast, we observed robustness in Rap1 transcription factor binding sites, whereby significant sequence variations had little effect on promoter activity. Finally, cases in which orthologous promoter activities were not conserved could largely be explained by the sequence variation within the core promoter. Together, our results provide novel insights into the mechanisms by which expression is conserved throughout evolution across diverged promoter sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.