Optical coherence tomography (OCT)/optical Doppler tomography (ODT) provides real-time in vivo high-resolution (10-microm) imaging of tissues and real-time spatially resolved blood flow in microvasculature. Hamster cheek pouches with induced dysplasia and malignancies were imaged with OCT/ODT to assess the potential for application to airway malignancy. In 22 Golden Syrian hamsters, 0.5% 9,10-dimethyl-1,2-benzanthracene induces carcinogenesis over 10 weeks in right side cheek pouches; the left side three served as controls. The cheek pouches are imaged in vivo prior to sacrifice, and in vitro after excision, using a prototype 1310-nm broadband superluminescent diode based OCT/ODT device. Images are compared to standard histopathology. OCT imaging offers good resolution of the hamster cheek pouches to depths of 1 to 3 mm and paralleled histologic images. The feasibility of high-resolution functional imaging is demonstrated in this hamster cheek pouch tumor model. ODT accurately detects vascular change associated with carcinogenesis.
Background: Optical coherence tomography (OCT) is a new technology capable of generating high resolution cross-sectional images of complex tissue in real time. Analogous to ultrasound, OCT measures backscattered light intensity using coherence interferometery to construct topographical images of complex tissue. Since OCT uses infrared light rather than acoustic waves, its spatial resolution is exceptionally high (2–10 µm). Recent advances in data acquisition, analysis, and processing enable real-time imaging, and make OCT a potentially valuable tool for pulmonary airway diagnostic applications, including assisting directed airway biopsies. Objective: This study evaluates feasibility of OCT for delineating proximal airway microstructures in various animal as well as human tracheas. Methods: Excised trachea samples from New Zealand white rabbits, Duroc pigs, and human trachea were imaged using a compact, 1,300-nm broad-band superluminescent-diode-based prototype fiber OCT device we constructed. The resulting structural OCT images were compared to conventional hematoxilin and eosin (HE) stained histological sections from the same samples. Results: OCT was able to delineate microstructures such as the epithelium, mucosa, cartilage, and glands in all samples. Conclusion: These findings suggest that integration of OCT with flexible fiberoptic bronchoscopy could enhance pulmonary diagnostic medicine and detection of pathologic tissue changes in various respiratory diseases.
OCT images of the trachea can distinguish many sub-surface structural features usually requiring biopsy and light microscopy for visualization. Marked differences between normal and septic trachea were apparent in OCT images. In the future, OCT may be a valuable tool for evaluating tracheal pathology in situ with high image resolution.
The 10 years of resurgent interest in lung volume reduction surgery (LVRS) and recent National Emphysema Treatment Trial findings for emphysema have stimulated a range of innovative alternative ideas aimed at improving outcomes and reducing complications associated with current LVRS techniques. Concepts being actively investigated at this time include surgical resection with compression/banding devices, endobronchial blockers, sealants, obstructing devices and valves, and bronchial bypass methods. These novel approaches are reaching the stage of clinical trials at this time. Theory, design issues, methods, potential advantages and limitations, and available results are presented. Extensive research in the near future will help to determine the potential clinical applicability of these new approaches to the treatment of emphysema symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.