Much research has focused on the photosynthetic responses of plants to elevated CO2 , with less attention given to the post-photosynthetic events which may lead to changes in the growth of tissues, organs and whole plants. The aim of this review is to identify how plant growth is altered in elevated CO2 and to determine which growth processes or cellular mechanisms are sensitive to carbon supply. For leaves, both the expansion of individual leaves and the initiation of leaf primordia are stimulated in elevated CO2. When lamina growth is promoted, this is usually associated with increased leaf cell expansion rather than increased leaf cell production. Using several clones of hybrid poplar (Populus euramericana, P. interamericana) two native herbs (Plantago media, Sanguisorba minor) and bean (Phaseolus vulgaris) we have identified the mechanism through which leaf cell expansion is promoted in elevated CO2. Changes in the water relations, turgor pressure (P) and yield turgor (Y) of growing leaves cannot explain increased cell expansion; this appears to occur because cell wall loosening is promoted, as suggested by three pieces of evidence. (i) The rate of decline of water potential (ψ) with time is accelerated when growing leaves are placed in psychrometers and allowed to relax, (ii) Instron-measured cell wall extensibility (WEX), is greater for leaves exposed to elevated CO2 and (iii) the activity of the putative wall loosening enzyme, XET is increased for leaves of P. vulgaris exposed to elevated CO2. Species differences do, however, exist; in the herb Lotus corniculatus small stimulations of leaf growth in elevated CO2 are due to increased leaf cell production and decreased cell size in elevated CO2. These results are discussed in relation to the concept of functional types. There is evidence to suggest that both cell production and cell expansion are promoted in roots of plants exposed to elevated CO2. For native herbs (Anthyllis vulneraria, Lotus corniculatus, P. media and S. minor), increased root growth in elevated CO2 is due to increased cell elongation. In contrast to leaves, this appears to occur because both root cell turgor pressure (P) and root cell wall extensibility (WEX) are promoted by exposure of shoots to elevated CO2. In longer-term studies on root growth, the effects of additional carbon on the production of root primordia and root branching are of overriding importance, suggesting that carbon supply may influence some aspect of the cell cycle, when effects on the extension of individual roots may not be apparent.
The effects of free‐air CO2 enrichment (FACE) on leaf growth in Populus, was studied. For the first time in field conditions, both the production and expansion of leaf cells were shown to be sensitive to atmospheric carbon dioxide. Leaf area expansion rate and final leaf size were stimulated under FACE for three species (Populus x euramericana (I‐214), P. nigra (Jean Pourtet) and P. alba (2AS‐11), with the largest effect observed for P. x euramericana (61%). In this species and in P. nigra, both epidermal cell size and cell number were increased, whereas for P. alba, only cell production was increased in FACE. Two findings suggest that changes in the cell wall may be important in explaining larger leaf cells in FACE: (i) Leaf cell wall extensibility of rapidly growing leaves increased in all species in FACE; and (ii) an increase in xyloglucan endotransglycosylase activity, a cell wall‐loosening enzyme, was increased in FACE and associated with leaf growth rate. The results suggest that the mechanisms by which FACE promotes leaf growth differ, depending on species. Despite this, increases in final leaf size provide an important component driving increased biomass accumulation in POPFACE, during this first year of rapid growth, prior to canopy closure. The question as to whether these effects are the result of a direct response to CO2, or are driven indirectly through substrate availability remains unresolved, although evidence from the literature suggests that the latter mechanism is most likely.
Genetic variation in stomatal initiation and density, and epidermal cell size and number were examined in a hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh in both ambient ([aCO2]) and elevated ([eCO2]) concentrations of CO2. We aimed to link anatomical traits with the underlying genetic map of F2 Family 331, composed of 350 markers across 19 linkage groups. Leaf stomatal and epidermal cell traits showed pronounced differences between the original parents. We considered the following traits in the F2 population: stomatal density (SD), stomatal index (SI), epidermal cell area (ECA) and the number of epidermal cells per leaf (ECN). In [eCO2], adaxial SD and SI were reduced in the F2 population, whereas ECA increased and ECN remained unchanged. In [aCO2], four putative quantitative trait loci (QTL) with logarithm of the odds ratio (LOD) scores greater than 2.9 were found for stomatal traits on linkage group B: adaxial SI (LOD scores of 5.4 and 5.2); abaxial SI (LOD score of 3.3); and SD (LOD score of 3.2). These results imply that QTL for SI and SD share linkage group B and are under genetic control. More moderate LOD scores (LOD scores >/= 2.5) suggest QTL for SI on linkage groups A and B and for SD on linkage groups B, D and X with a probable co-locating quantitative trait locus for SI and SD on linkage group D (position 46.3 cM). The QTL in both [aCO2] and [eCO2] for adaxial SD were co-located on linkage group X (LOD scores of 3.5 and 2.6, respectively) indicating a similar response across both treatments. Putative QTL were located on linkage group A (position 89.2 cM) for both leaf size and ECN in [aCO2] and for ECA at almost the same position. The data provide preliminary evidence that leaf stomatal and cell traits are amenable to QTL analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.