The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.
Atmospheric-pressure plasma atomic layer deposition (APP-ALD) of TiO x at room temperature is reported for the first time. Layer properties of the APP-ALD-grown TiO x are compared to those reported for the low-pressure plasma ALD of TiO x . The contribution of parasitic CVD to the process is discussed. The application of the resulting TiO x layers as electron-extraction interlayers in inverted organic solar cells (OSCs) is demonstrated. The characteristics of OSCs based on APP-ALD-grown TiO x are similar to those of OSCs based on TiO x prepared by low-pressure thermal ALD or sol-gel processing. APP-ALD is intended to harvest the beneficial properties of ALD layers in a high-throughput atmospheric processing environment.
Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1 of pp collision data at $$ \sqrt{s} $$
s
= 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $$ {1.04}_{-0.09}^{+0.10} $$
1.04
−
0.09
+
0.10
. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a W or Z boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a p-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.