This paper investigates the issue of real-world identification to fulfill better species protection. We focus on plant species identification as it is a classic and hot issue. In tradition plant species identification the samples are scanned specimen and the background is simple. However, real-world species recognition is more challenging. We first systematically investigate what is realistic species recognition and the difference from tradition plant species recognition. To deal with the challenging task, an interdisciplinary collaboration is presented based on the latest advances in computer science and technology. We propose a novel framework and an effective data augmentation method for deep learning in this paper. We first crop the image in terms with visual attention before general recognition. Besides, we apply it as a data augmentation method. We call the novel data augmentation approach attention cropping (AC). Deep convolutional neural networks are trained to predict species from a large amount of data. Extensive experiments on traditional dataset and specific dataset for real-world recognition are conducted to evaluate the performance of our approach. Ex- * Corresponding author.periments first demonstrate that our approach achieves state-of-the-art results on different types of datasets. Besides, we also evaluate the performance of data augmentation method AC. Results show that AC provides superior performance. Compared with the precision of methods without AC, the results with AC achieve substantial improvement.
Image inpainting is a technique that aims to fill in the missing regions with visually plausible content. However, an opposite idea, which is painting outside images, receives little work. In this study, we investigate the issue of image outpainting. Considering that the model needs better prediction ability as there is less neighboring information in image outpainting, the study proposes a novel image outpainting architecture that can obtain both deep model performance and detailed information. To fully take advantage of residual learning, dense residual (DR) learning is proposed and the image generative network is built on DR. To avoid losing subtle information caused by downsampling in encoder-decoder, shortcuts are added for transferring previous knowledge. Different from vanilla U-Net, we propose a skip method of the semicomplete form. Experimental results show that the proposed method achieves excellent performance.
Image completion is an approach to fill a damaged region (hole) in an image. In this study, we adopt a novel method which can repair a target region with structural constraints in an architectural scene. An objective function that consists of three terms is proposed to solve the image completion problem. In color term, we compute a parameterized transformation model using detected plane parameters and measure the distance between the target patch and transformed source patch. This model helps to extend the patch search space and find an optimal solution. To improve the patch matching accuracy, we add a guide term that includes structure term and consistency term. The structure term encourages sampling patches along the structural direction, and the consistency term is used to maintain the texture consistency. Considering the color deviation between patches, we add a gradient term into a framework that can solve more challenging problems. Compared with previous methods, the proposed method has good performance in preserving global structure and reasonably estimating perspective distortions. Moreover, we obtain acceptable results in natural scenes. The experimental results illustrate that this novel method is a potential tool for image completion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.