This paper investigates the issue of real-world identification to fulfill better species protection. We focus on plant species identification as it is a classic and hot issue. In tradition plant species identification the samples are scanned specimen and the background is simple. However, real-world species recognition is more challenging. We first systematically investigate what is realistic species recognition and the difference from tradition plant species recognition. To deal with the challenging task, an interdisciplinary collaboration is presented based on the latest advances in computer science and technology. We propose a novel framework and an effective data augmentation method for deep learning in this paper. We first crop the image in terms with visual attention before general recognition. Besides, we apply it as a data augmentation method. We call the novel data augmentation approach attention cropping (AC). Deep convolutional neural networks are trained to predict species from a large amount of data. Extensive experiments on traditional dataset and specific dataset for real-world recognition are conducted to evaluate the performance of our approach. Ex- * Corresponding author.periments first demonstrate that our approach achieves state-of-the-art results on different types of datasets. Besides, we also evaluate the performance of data augmentation method AC. Results show that AC provides superior performance. Compared with the precision of methods without AC, the results with AC achieve substantial improvement.
Materials properties depend not only on their compositions but also their microstructures under various processing conditions. So far, the analyses of complex microstructure images rely mostly on human experience, lack of automatic quantitative characterization methods. Machine learning provides an emerging vital tool to identify various complex materials phases in an intelligent manner. In this work, we propose a “center-environment segmentation” (CES) feature model for image segmentation based on machine learning method with environment features and the annotation input of domain knowledge. The CES model introduces the information of neighbourhood as the features of a given pixel, reflecting the relationships between the studied pixel and its surrounding environment. Then, an iterative integrated machine learning method is adopted to train and correct the image segmentation model. The CES model was successfully applied to segment seven different material images with complex texture ranging from steels to woods. The overall performance of the CES method in determining boundary contours is better than many conventional methods in the case study of the segmentation of steel image. This work shows that the iterative introduction of domain knowledge and environment features improve the accuracy of machine learning based image segmentation for various complex materials microstructures.
Image completion is an approach to fill a damaged region (hole) in an image. In this study, we adopt a novel method which can repair a target region with structural constraints in an architectural scene. An objective function that consists of three terms is proposed to solve the image completion problem. In color term, we compute a parameterized transformation model using detected plane parameters and measure the distance between the target patch and transformed source patch. This model helps to extend the patch search space and find an optimal solution. To improve the patch matching accuracy, we add a guide term that includes structure term and consistency term. The structure term encourages sampling patches along the structural direction, and the consistency term is used to maintain the texture consistency. Considering the color deviation between patches, we add a gradient term into a framework that can solve more challenging problems. Compared with previous methods, the proposed method has good performance in preserving global structure and reasonably estimating perspective distortions. Moreover, we obtain acceptable results in natural scenes. The experimental results illustrate that this novel method is a potential tool for image completion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.