Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.
Abstract:Macrophages have a diverse set of functions based upon their activation states. The activation states, including resting (M0) and polarizing (M1 and M2) states, of macrophages derived from the mouse bone marrow, spleen, and peritoneal cavity (BMs, SPMs, and PCMs, respectively) were compared. We evaluated the macrophage yield per mouse and compared the surface markers major histocompatibility complex (MHC) II and CD86 by flow cytometry. The relative mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, mannose receptor (MR), and Ym1 in the M0, M1, and M2 states were also compared using real-time polymerase chain reaction (PCR) analysis. Bone marrow yielded the most macrophages with the best homogeneity, but they were polarized toward the M2 phenotype. All three types of macrophages had the capacity to polarize into the M1 and M2 states, but SPMs had a stronger capacity to polarize into M1. The three types of macrophages showed no differences in their capacity to polarize into the M2 state. Therefore, the three types of macrophages have distinct characteristics regardless of their resting or polarizing states. Although bone marrow can get large amounts of homogeneous macrophages, the macrophages cannot replace tissue-derived macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.