c Brachyspira hyodysenteriae colonizes the pig colon, resulting in mucohemorrhagic diarrhea and growth retardation. Fecal mucus is a characteristic feature of swine dysentery; therefore, we investigated how the mucin environment changes in the colon during infection with B. hyodysenteriae and how these changes affect this bacterium's interaction with mucins. We isolated and characterized mucins, the main component of mucus, from the colon of experimentally inoculated and control pigs and investigated B. hyodysenteriae binding to these mucins. Fluorescence microscopy revealed a massive mucus induction and disorganized mucus structure in the colon of pigs with swine dysentery. Quantitative PCR (qPCR) and antibody detection demonstrated that the mucus composition of pigs with swine dysentery was characterized by de novo expression of MUC5AC and increased expression of MUC2 in the colon. Mucins from the colon of inoculated and control pigs were isolated by two steps of isopycnic density gradient centrifugation. The mucin densities of control and inoculated pigs were similar, whereas the mucin quantity was 5-fold higher during infection. The level of B. hyodysenteriae binding to mucins differed between pigs, and there was increased binding to soluble mucins isolated from pigs with swine dysentery. The ability of B. hyodysenteriae to bind, measured in relation to the total mucin contents of mucus in sick versus healthy pigs, increased 7-fold during infection. Together, the results indicate that B. hyodysenteriae binds to carbohydrate structures on the mucins as these differ between individuals. Furthermore, B. hyodysenteriae infection induces changes to the mucus niche which substantially increase the amount of B. hyodysenteriae binding sites in the mucus.
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.
BackgroundMucins are heavily O-glycosylated proteins where the glycosylation has been shown to play an important role in cancer. Normal epithelial ovarian cells do not express secreted mucins, but their abnormal expression has previously been described in epithelial ovarian cancer and may relate to tumor formation and progression. The cyst fluids were shown to be a rich source for acidic glycoproteins. The study of these proteins can potentially lead to the identification of more effective biomarkers for ovarian cancer.MethodsIn this study, we analyzed the expression of the MUC5AC and the O-glycosylation of acidic glycoproteins secreted into ovarian cyst fluids. The samples were obtained from patients with serous and mucinous ovarian tumors of different stages (benign, borderline, malignant) and grades. The O-linked oligosaccharides were released and analyzed by negative-ion graphitized carbon Liquid Chromatography (LC) coupled to Electrospray Ionization tandem Mass Spectrometry (ESI-MSn). The LC-ESI-MSn of the oligosaccharides from ovarian cyst fluids displayed differences in expression of fucose containing structures such as blood group ABO antigens and Lewis-type epitopes.ResultsThe obtained data showed that serous and mucinous benign adenomas, mucinous low malignant potential carcinomas (LMPs, borderline) and mucinous low-grade carcinomas have a high level of blood groups and Lewis type epitopes. In contrast, this type of fucosylated structures were low abundant in the high-grade mucinous carcinomas or in serous carcinomas. In addition, the ovarian tumors that showed a high level of expression of blood group antigens also revealed a strong reactivity towards the MUC5AC antibody. To visualize the differences between serous and mucinous ovarian tumors based on the O-glycosylation, a hierarchical cluster analysis was performed using mass spectrometry average compositions (MSAC).ConclusionMucinous benign and LMPs along with mucinous low-grade carcinomas appear to be different from serous and high-grade mucinous carcinomas based on their O-glycan profiles.
There is little information on mucins versus potential regulatory factors in the peripheral airway lumen of long-term smokers with (LTS+) and without (LTS−) chronic obstructive pulmonary disease (COPD). We explored these matters in bronchoalveolar lavage (BAL) samples from two study materials, both including LTS+ and LTS− with a very similar historic exposure to tobacco smoke, and healthy non-smokers (HNSs; n=4–20/group). Utilizing slot blot and immunodetection of processed (filtered and centrifuged), as well as unprocessed BAL samples from one of the materials, we compared the quantity and fraction of large complexes of mucins. All LTS displayed an enhanced (median) level of MUC5AC compared with HNS. LTS− displayed a higher level of large MUC5AC complexes than HNS while LTS+ displayed a similar trend. In all LTS, total MUC5AC correlated with blood leukocytes, BAL neutrophil elastase and net gelatinase activity. Large mucin complexes accounted for most MUC5B, without clear group differences. In all LTS, total MUC5B correlated with total MUC5AC and local bacteria. In the same groups, large MUC5B complexes correlated with serum cotinine. MUC1 was increased and correlated with BAL leukocytes in all LTS whereas MUC2 was very low and without clear group differences. Thus, the main part of MUC5AC and MUC5B is present as large complexes in the peripheral airway lumen and historic as well as current exposure to tobacco smoke emerge as potential regulatory factors, regardless of COPD per se. Bacteria, leukocytes and proteinases also constitute potential regulatory factors, of interest for future therapeutic strategies.
MUC1 mucin is up-regulated and aberrantly glycosylated in many human epithelial carcinomas. Over-expression of MUC1 has also been implicated in prostate cancer, but neither the role of MUC1 in the cancer progression nor the mucin O-glycosylation has been fully elucidated. In this study, we characterized the O-glycans on MUC1 when over-expressed in the human prostate cancer cell line C4-2B(4). We found that the main O-glycan consisted of the neutral core 2 oligosaccharide Galβ3(Galβ3/4GlcNAcβ6)GalNAc-ol, with minor components being fucosylated and sialylated variants of the same core 2 oligosaccharide. Small amounts of the shorter core 1 O-glycans were also detected.We then used the MUC1 over-expressing cell lines to study the effects of MUC1 on prostate cancer cell behavior. The results demonstrate that over-expression of MUC1 did not affect the cells' proliferation, but led to a decreased adhesion to the extracellular matrix components fibronectin and collagen I in vitro. When inoculated in BALB/c nude mice, C4-2B(4) cells expressing MUC1 showed a tendency to form fewer tumors than wt cells and the tumors also grew more slowly, but there was a large variation between different tumors. These findings suggest that MUC1 may not have the same cancer-promoting effect in prostate cancer cells that is commonly seen in other epithelial cancers such as breast, colon, and pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.