Whole slide imaging (WSI) allows pathologists to view virtual versions of slides on computer monitors. With increasing adoption of digital pathology, laboratories have begun to validate their WSI systems for diagnostic purposes according to reference guidelines. Among these the College of American Pathologists (CAP) guideline includes three strong recommendations (SRs) and nine good practice statements (GPSs). To date, the application of WSI to cytopathology has been beyond the scope of the CAP guideline due to limited evidence. Herein we systematically reviewed the published literature on WSI validation studies in cytology. A systematic search was carried out in PubMed-MEDLINE and Embase databases up to November 2021 to identify all publications regarding validation of WSI in cytology. Each article was reviewed to determine if SRs and/or GPSs recommended by the CAP guideline were adequately satisfied. Of 3963 retrieved articles, 25 were included. Only 4/25 studies (16%) satisfied all three SRs, with only one publication (1/25, 4%) fulfilling all three SRs and nine GPSs. Lack of a suitable validation dataset was the main missing SR (16/25, 64%) and less than a third of the studies reported intra-observer variability data (7/25, 28%). Whilst the CAP guideline for WSI validation in clinical practice helped the widespread adoption of digital pathology, more evidence is required to routinely employ WSI for diagnostic purposes in cytopathology practice. More dedicated validation studies satisfying all SRs and/or GPSs recommended by the CAP are needed to help expedite the use of WSI for primary diagnosis in cytopathology.
Ki-67 assessment is a key step in the diagnosis of neuroendocrine neoplasms (NENs) from all anatomic locations. Several challenges exist related to quantifying the Ki-67 proliferation index due to lack of method standardization and inter-reader variability. The application of digital pathology coupled with machine learning has been shown to be highly accurate and reproducible for the evaluation of Ki-67 in NENs. We systematically reviewed all published studies on the subject of Ki-67 assessment in pancreatic NENs (PanNENs) employing digital image analysis (DIA). The most common advantages of DIA were improvement in the standardization and reliability of Ki-67 evaluation, as well as its speed and practicality, compared to the current gold standard approach of manual counts from captured images, which is cumbersome and time consuming. The main limitations were attributed to higher costs, lack of widespread availability (as of yet), operator qualification and training issues (if it is not done by pathologists), and most importantly, the drawback of image algorithms counting contaminating non-neoplastic cells and other signals like hemosiderin. However, solutions are rapidly developing for all of these challenging issues. A comparative meta-analysis for DIA versus manual counting shows very high concordance (global coefficient of concordance: 0.94, 95% CI: 0.83–0.98) between these two modalities. These findings support the widespread adoption of validated DIA methods for Ki-67 assessment in PanNENs, provided that measures are in place to ensure counting of only tumor cells either by software modifications or education of non-pathologist operators, as well as selection of standard regions of interest for analysis. NENs, being cellular and monotonous neoplasms, are naturally more amenable to Ki-67 assessment. However, lessons of this review may be applicable to other neoplasms where proliferation activity has become an integral part of theranostic evaluation including breast, brain, and hematolymphoid neoplasms.
Background: Digital pathology has widened pathologists' opportunities to examine both surgical and cytological samples. Recently, portable mobile devices like tablets and smartphones have been tested for application with digital technologies including static, dynamic, and more recently whole slide imaging. This study aimed to review the published literature on the impact of mobile devices on cancer diagnoses in cytology. This analysis focused on their diagnostic potential, technical details, critical issues and pitfalls, and economical aspects.Methods: A systematic search was carried out in the electronic databases Embase and PubMed. Studies dealing with the application of mobile devices for diagnosing cancer on cytological specimens were included. The quality of studies was assessed with the QUADAS-2 tool. The main themes addressed were the comparison of manual examination with light microscopy and the use of mobile tools for primary diagnosis. The technical features of different models of smartphones and tablets, software, and adapters were also studied in terms of feasibility and costs-analysis.Results: Of 2458 retrieved articles, 18 were included. Concordance with light microscopy was good and diagnostic performance comparable with an expert pathologist's diagnosis.The mobile devices studied differed, sometimes significantly, in terms of speed and cost.The utility was improved by employing specifically designed adapters. Image acquisition and transmission represent the main critical points in almost all studies. Conclusion:The use of mobile devices demonstrated promising results regarding the digital evaluation of cytological samples. Widespread adoption even in underserved areas is anticipated following validation studies, technology improvements, and reduction in the costs.
ObjectiveDigital pathology with whole-slide imaging (WSI) has many potential clinical and non-clinical applications. In the past two decades, despite significant advances in WSI technology adoption remains slow for primary diagnosis. The aim of this study was to identify common pitfalls of WSI reported in validation studies and offer measures to overcome these challenges.MethodsA systematic search was conducted in the electronic databases Pubmed-MEDLINE and Embase. Inclusion criteria were all validation studies designed to evaluate the feasibility of WSI for diagnostic clinical use in pathology. Technical and diagnostic problems encountered with WSI in these studies were recorded.ResultsA total of 45 studies were identified in which technical issues were reported in 15 (33%), diagnostic issues in 8 (18%), and 22 (49%) reported both. Key technical problems encompassed slide scan failure, prolonged time for pathologists to review cases, and a need for higher image resolution. Diagnostic challenges encountered were concerned with grading dysplasia, reliable assessment of mitoses, identification of microorganisms, and clearly defining the invasive front of tumors.ConclusionDespite technical advances with WSI technology, some critical concerns remain that need to be addressed to ensure trustworthy clinical diagnostic use. More focus on the quality of the pre-scanning phase and training of pathologists could help reduce the negative impact of WSI technical difficulties. WSI also seems to exacerbate specific diagnostic tasks that are already challenging among pathologists even when examining glass slides with conventional light microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.