Learning from human driver's strategies for solving complex and potentially dangerous situations including interaction with other road users has the potential to improve decision-making methods for automated vehicles. In this paper, we focus on simple unsignalized intersections and roundabouts in presence of another vehicle. We propose a human-like decision-making algorithm for these scenarios built up from human drivers recordings. The algorithm includes a risk assessment to avoid collisions in the intersection area. Three road topologies with different interaction scenarios were presented to human participants on a previously developed simulation tool. The same scenarios have been used to validate our decision-making process. The algorithm showed promising results with no collisions in all setups and the ability to successfully determine to go before or after another vehicle.
We present here a framework to integrate into a motion planning method the interaction zones of a moving robot with its future surroundings, the reachable interaction sets. It can handle highly dynamic scenarios when combined with path planning methods optimized for quasi-static environments. As a demonstrator, it is integrated here with an artificial potential field reactive method and with a Bézier curve path planning. Experimental evaluations show that this approach significantly improves dynamic path planning methods, especially when the speeds of the obstacles are higher than the one of the robot. The presented approach is used together with a global planning approach in order to handle complex static environments in presence of fast-moving obstacles. When the ego vehicle is not holonomic the presented approach is able to take dynamic constraints into account, which improve the prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.