Superoxide dismutase (SOD), which plays a very important role in protecting organisms from oxygen toxicity, has therapeutic importance. It was purified from sewage isolated E. coli and characterized. Eukaryotic cells also produce SOD but culturing and maintenance of eukaryotic cells for production of SOD is costly as well as difficult. Using prokaryotic cells i.e. bacteria, production cost can be reduced. A rich bacterial source was identified. Bacterial membrane was ruptured in the presence of lysozyme and glass bead. Following ammonium sulphate precipitation, SOD-containing solution was applied to DEAE-cellulose and then Sephadex G-75 gel columns. SOD was purified 63.91-fold with a specific activity of 3835U/ mg. The molecular weight was estimated to be 35.713 kDa by SDS-PAGE gel. Maximum SOD activity was observed between pH 7.0 to 7.5 at temperature range 37-50ºC. This enzyme has fair thermal stability. The enzyme was found to be stable in presence of 1% salt only. The activity found to be gradually reduced approximately 50% at higher concentrations. It was totally inactivated above 9% salt concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.