At present, there is conflicting evidence whether microsatellite instability (MSI) plays a role in the pathogenesis of breast cancer. Here we describe for the first time an MSI(+) phenotype in two breast cancer cell lines, CAL51 and MT-3, resembling that observed in colorectal cancers. These cell lines are characterized by near-diploid and hyperdiploid karyotypes, respectively. We detected MSI in these cell lines within two non-coding (BAT-25 and BAT-26) and within coding repeat sequences of genes known to be mutated in MSI(+) cancer (TGFBR2, IGF2R, BAX). We provide evidence that the inactivation of MMR genes is responsible for MSI in these cell lines.
The chromosome region 8p12-p22 shows frequent allelic loss in a variety of human malignancies, including breast cancer (BC). The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptors TRAIL-R1, -R2, -R3 and -R4 are located on 8p21-p22 and might be candidate tumor suppressor genes in this region. To evaluate the involvement of TRAIL receptors in breast carcinogenesis, we have analyzed the entire coding region of TRAIL-R2 and the death domain (DD) regions of TRAIL-R1 and -R4 for the detection of somatic mutations in a series of breast tumors, lymph node metastases and BC cell lines. Overall, we detected 1, 11 and 3 alterations in the TRAIL-R1, -R2 and -R4 genes, respectively. Although functional studies have not yet been performed, we assume that most of these alterations do not alter the function of TRAIL-receptors. Additionally, we analyzed individuals from BC families for the detection of TRAIL-R2 germline mutations. One alteration has been found in the Kozak consensus motif at position -4 with respect to the translation initiation AUG [1-4 (C-->A)]. We further studied the mRNA expression of TRAIL and the 4 TRAIL receptors. In BC cell lines, a strongly decreased mRNA expression of TRAIL, TRAIL-R1, -R3 and -R4 was found, whereas the expression of TRAIL-R2 was only slightly reduced. In breast tumors, a 1.2-3.6-fold reduction of mRNA signals of the 5 genes was observed. No correlation was found between the expression level of TRAIL and the receptor mRNAs and clinicopathologic variables and between the expression of TRAIL-R2 and TP53 mutation status and loss of heterozygosity (LOH) at 8p21-p22. Taken together, we cannot exclude the involvement of TRAIL-receptors in BC. Our mutation studies indicate that DD receptor mutations occur at low frequency and are not the primary cause for the altered mRNA expression of TRAIL and TRAIL-receptors in BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.