Summary DataLad is a Python-based tool for the joint management of code, data, and their relationship, built on top of a versatile system for data logistics ( git-annex ) and the most popular distributed version control system ( Git ). It adapts principles of open-source software development and distribution to address the technical challenges of data management, data sharing, and digital provenance collection across the life cycle of digital objects. DataLad aims to make data management as easy as managing code. It streamlines procedures to consume, publish, and update data, for data of any size or type, and to link them as precisely versioned, lightweight dependencies. DataLad helps to make science more reproducible and FAIR ( Wilkinson et al., 2016 ). It can capture complete and actionable process provenance of data transformations to enable automatic re-computation. The DataLad project ( datalad.org ) delivers a completely open, pioneering platform for flexible decentralized research data management (RDM) ( Hanke, Pestilli, et al., 2021 ). It features a Python and a command-line interface, an extensible architecture, and does not depend on any centralized services but facilitates interoperability with a plurality of existing tools and services. In order to maximize its utility and target audience, DataLad is available for all major operating systems, and can be integrated into established workflows and environments with minimal friction.
A well-accepted model of episodic memory involves the processing of spatial and non-spatial information by segregated pathways and their association within the hippocampus. However, these pathways project to distinct proximodistal levels of the hippocampus. Moreover, spatial and non-spatial subnetworks segregated along this axis have been recently described using memory tasks with either a spatial or a non-spatial salient dimension. Here, we tested whether the concept of segregated subnetworks and the traditional model are reconcilable by studying whether activity within CA1 and CA3 remains segregated when both dimensions are salient, as is the case for episodes. Simultaneously, we investigated whether temporal or spatial information bound to objects recruits similar subnetworks as items or locations per se, respectively. To do so, we studied the correlations between brain activity and spatial and/or temporal discrimination ratios in proximal and distal CA1 and CA3 by detecting Arc RNA in mice. We report a robust proximodistal segregation in CA1 for temporal information processing and in both CA1 and CA3 for spatial information processing. Our results suggest that the traditional model of episodic memory and the concept of segregated networks are reconcilable, to a large extent and put forward distal CA1 as a possible “home” location for time cells.
The natural environment is dynamic and moving objects become constantly occluded, engaging the brain in a challenging completion process to estimate where and when the object might reappear. Although motion extrapolation is critical in daily life—imagine crossing the street while an approaching car is occluded by a larger standing vehicle—its neural underpinnings are still not well understood. While the engagement of low‐level visual cortex during dynamic occlusion has been postulated, most of the previous group‐level fMRI‐studies failed to find evidence for an involvement of low‐level visual areas during occlusion. In this fMRI‐study, we therefore used individually defined retinotopic maps and multivariate pattern analysis to characterize the neural basis of visible and occluded changes in motion direction in humans. To this end, participants learned velocity‐direction change pairings (slow motion‐upwards; fast motion‐downwards or vice versa) during a training phase without occlusion and judged the change in stimulus direction, based on its velocity, during a following test phase with occlusion. We find that occluded motion direction can be predicted from the activity patterns during visible motion within low‐level visual areas, supporting the notion of a mental representation of motion trajectory in these regions during occlusion.
Being treated fairly by others is an important need in everyday life. Experimentally, fairness can be studied using the Ultimatum Game, where the decision to reject a low, but non-zero offer is seen as a way to punish the other player for an unacceptable offer. The canonical explanation of such behavior is inequity aversion: people prefer equal outcomes over personal gains. However, there is abundant evidence that people's decision to reject a low offer can be changed by contextual factors and their emotional state, which cannot be explained by the inequity aversion model. Here, we expand a recent alternative explanation: rejections are driven by deviations from expectations: the larger the difference between the actual offer and the expected offer, the more likely one is to reject the offer. Specifically, we provided participants with explicit information on what kind of offers to expect using histograms depicting distribution of offers given in a previous experiment by the same proposers. Crucially, we showed four different distributions, manipulating both the mean and the variance of these expected sets of offers. We found that 50% of our participants clearly and systematically changed their behavior as a function of their expectations (11% followed the standard-economic model of pure self-interest and 39% where not distinguishable from the inequity-aversion model). Using a logistic mixed-model analysis, we found that the mean and variance differently affect the decision to reject an offer. Specifically, the mean expected offer affected the threshold of what offers are acceptable, while the expected variance of offers changed how strict participants were about this threshold. Together, these results suggest that social expectations have a more complex nature as current theories propose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.