Despite its great promise, neuroimaging has yet to substantially impact clinical practice and public health. However, a developing synergy between emerging analysis techniques and data-sharing initiatives has the potential to transform the role of neuroimaging in clinical applications. We review the state of translational neuroimaging and outline an approach to developing brain signatures that can be shared, tested in multiple contexts and applied in clinical settings. The approach rests on three pillars: (i) the use of multivariate pattern-recognition techniques to develop brain signatures for clinical outcomes and relevant mental processes; (ii) assessment and optimization of their diagnostic value; and (iii) a program of broad exploration followed by increasingly rigorous assessment of generalizability across samples, research contexts and populations. Increasingly sophisticated models based on these principles will help to overcome some of the obstacles on the road from basic neuroscience to better health and will ultimately serve both basic and applied goals.
Neuroimaging has identified many correlates of emotion but has not yet yielded brain representations predictive of the intensity of emotional experiences in individuals. We used machine learning to identify a sensitive and specific signature of emotional responses to aversive images. This signature predicted the intensity of negative emotion in individual participants in cross validation (n =121) and test (n = 61) samples (high–low emotion = 93.5% accuracy). It was unresponsive to physical pain (emotion–pain = 92% discriminative accuracy), demonstrating that it is not a representation of generalized arousal or salience. The signature was comprised of mesoscale patterns spanning multiple cortical and subcortical systems, with no single system necessary or sufficient for predicting experience. Furthermore, it was not reducible to activity in traditional “emotion-related” regions (e.g., amygdala, insula) or resting-state networks (e.g., “salience,” “default mode”). Overall, this work identifies differentiable neural components of negative emotion and pain, providing a basis for new, brain-based taxonomies of affective processes.
Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy.DOI: http://dx.doi.org/10.7554/eLife.15166.001
The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.