Objective: To explore the types of errors that commercial pilots may make when trying to resolve a suspected engine oil leak using the interfaces currently available. Background: The decisions that pilots make often have to be made quickly and under time pressure, with the emphasis on avoiding critical situations from arising. To make the correct decisions, it is vital that pilots have accurate and up-to-date information available. However, interaction with flight deck interfaces may lead to error if they are not effectively designed. Method: A hierarchical task analysis was conducted using evidence from pilot interview data to understand the pilots’ typical response to a suspected engine oil leak scenario. This was used as the primary input into the Systematic Human Error Reduction and Prediction Approach (SHERPA). Results: A total of 108 possible errors were identified. The most common error type was a retrieval error, in which flight crews may retrieve the wrong information about the engine. A number of remedial measures are proposed to try and overcome such issues. Conclusion: This analysis provides an initial starting point for identifying potential future design ideas that can assist the pilots in dealing with oil leaks. Application: This work has identified the value of applying human error identification methodologies to the assessment of current flight deck processes surrounding engine oil leaks. The method presented permits the operational analysis of possible errors on the flight deck and facilitates the proposition of remedial measures to implement technological innovations that can mitigate error.
As aero gas turbines strive for higher efficiencies and reduced fuel burn, the trend is for engine overall pressure ratio to increase. This means that engine cycle temperatures will increase and that cooling of various engine components, for example the high pressure turbine, is becoming more difficult. One solution is to employ a cooled cooling air system where some of the compressor efflux is diverted for additional cooling in a heat exchanger fed by air sourced from the by-pass duct. Design of the ducting to feed the heat exchangers with coolant air is challenging as it must route the air through the scenery present in the existing engine architecture which leads to a convoluted and highly curved system. Numerical predictions using ANSYS Fluent demonstrated that a baseline design was unsuitable due to large amounts of flow separation in the proximity of the heat exchangers. This paper is mainly concerned with the aerodynamic design of this component of the duct. In order to produce a viable aerodynamic solution a numerical design methodology was developed which significantly enhances and accelerates the design cycle. This used a Design of Experiments approach linked to an interactive design tool which parametrically controlled the duct geometry. Following an iterative process, individually optimized 2D designs were numerically assessed using ANSYS Fluent. These designs were then fed into an interactive 3D model in order to generate a final aerodynamic definition of the ducting. Further CFD predictions were then carried out to confirm the suitability of the design. RANS CFD solutions, generated, using a Reynolds stress turbulence model, suggested that the new design presented significant improvement in terms of diffusion and flow uniformity.
To manage the increasing turbine temperatures of future gas turbines a cooled cooling air system has been proposed. In such a system some of the compressor efflux is diverted for additional cooling in a heat exchanger (HX) located in the bypass duct. The cooled air must then be returned, across the main gas path, to the engine core for use in component cooling. One option is do this within the combustor module and two methods are examined in the current paper; via simple transfer pipes within the dump region or via radial struts in the prediffuser. This paper presents an experimental investigation to examine the aerodynamic impact these have on the combustion system external aerodynamics. This included the use of a fully annular, isothermal test facility incorporating a bespoke 1.5 stage axial compressor, engine representative outlet guide vanes (OGVs), prediffuser, and combustor geometry. Area traverses of a miniature five-hole probe were conducted at various locations within the combustion system providing information on both flow uniformity and total pressure loss. The results show that, compared to a datum configuration, the addition of transfer pipes had minimal aerodynamic impact in terms of flow structure, distribution, and total pressure loss. However, the inclusion of prediffuser struts had a notable impact increasing the prediffuser loss by a third and consequently the overall system loss by an unacceptable 40%. Inclusion of a hybrid prediffuser with the cooled cooling air (CCA) bleed located on the prediffuser outer wall enabled an increase of the prediffuser area ratio with the result that the system loss could be returned to that of the datum level.
As aero gas turbine designs strive for ever greater efficiencies, the trend is for engine overall pressure ratios to rise. Although this provides greater thermal efficiency, it means that cycle temperatures also increase. One potential solution to managing the increasing temperatures is to employ a cooled cooling air system. In such a system, a purge flow into the main gas path downstream of the compressor will be required to prevent hot gas being ingested into the rotor drive cone cavity. However, the main gas path in compressors is aerodynamically sensitive and it is important to understand, and mitigate, the impact such a flow may have on the compressor outlet guide vanes, pre-diffuser, and the downstream combustion system aerodynamics. Initial computational fluid dynamics (CFD) predictions demonstrated the potential of the purge flow to negatively affect the outlet guide vanes and alter the inlet conditions to the combustion system. The purge flow modified the incidence onto the outlet guide vane, at the hub, such that the secondary flows increased in magnitude. An experimental assessment carried out using an existing fully annular, isothermal test facility confirmed the CFD results and importantly demonstrated that the degradation in the combustor inlet flow resulted in an increased combustion system loss. At the proposed purge flow rate, equal to ∼1% of the mainstream flow, these effects were small with the system loss increasing by ∼4%. However, at higher purge flow rates (up to 3%), these effects became notable and the outlet guide vane and pre-diffuser flow degraded significantly with a resultant increase in the combustion system loss of ∼13%. To mitigate these effects, CFD was used to examine the effect of varying the purge flow swirl fraction in order to better align the flow at the hub of the outlet guide vane. With a swirl fraction of 0.65 (x rotor speed), the secondary flows were reduced below that of the datum case (with no purge flow). Experimental data showed good agreement with the predicted flow topology and performance trends but the measured data showed smaller absolute changes. Differences in system loss were measured with savings of around 10% at the turbine feed ports for a mass flow ratio of 1% and a swirl fraction of 0.65.
Technological advancement brings opportunities for enhanced information, support, and functionality within the flight deck. Whilst this has many benefits to the pilot and the overall safety of the aircraft, the practical integration of new technologies needs to be carefully considered throughout the entirety of the design process. The application of Human Factors methods must ensure that new technologies do not expose the system to new failures. This paper compares two methods of generating design recommendations for new technological features; the system human error reduction and prediction approach (SHERPA) and the Design with Intent (DwI) method. The assimilation of the recommendations from both methods presents interesting findings that highlight the benefits of integrating end-users within structured Human Factors methods to generate effective and usable technological interfaces. Case examples showing the similarities and differences between the concepts that the two methods generate are presented. The practicalities in using each approach within a Human Factors-driven design process are also discussed. The findings highlight the importance of end-user engagement in the early phases of the design lifecycle and how this relates to a Human Factors approach to design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.