Lipids are important components of biological systems, and their role can be currently investigated by the application of untargeted, holistic approaches such as metabolomics and lipidomics. Acquired data are analyzed to find significant signals responsible for the differentiation between the investigated conditions. Subsequently, identification has to be performed to bring biological meaning to the obtained results. Lipid identification seems to be relatively easy due to the known characteristic fragments; however, the large number of structural isomers and the formation of different adducts makes it challenging and at risk of misidentification. The inspection of data, acquired for plasma samples by a standard metabolic fingerprinting method, revealed multisignal formations for phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins by the formation of ions such as [M + H](+), [M + Na](+), and [M + K](+) in positive ionization mode and [M - H](-), [M + HCOO](-), and [M + Cl](-) in negative mode. Moreover, sodium formate cluster formation was found for [M + H·HCOONa](+) and [H-H·HCOONa](-). The MS/MS spectrum obtained for each of the multi-ions revealed significant differences in the fragmentation, which were confirmed by the analysis of the samples in two independent research centers. After the inspection of an acquired spectra, a list of characteristic and diagnostic fragments was proposed that allowed for easy, quick, and robust lipid identification that provides information about the headgroup, formed adduct, and fatty acyl composition. This ensures successful identification, which is of great importance for the contextualization of data and results validation.
Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However, many molecular modulations after those procedures remain unexplained. Therefore, application of metabolomics to study this field seems to be a proper solution. New findings can suggest new directions of surgery technics modifications, contribute to broadening knowledge about obesity and diseases related to it, and perhaps develop nonsurgical methods of treatment in the future.
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Cataract is the leading cause of blindness worldwide. Epidemiological studies revealed up to a fivefold increased prevalence of cataracts in diabetic subjects. Metabolomics is nowadays frequently implemented to understand pathophysiological processes responsible for disease occurrence and progression. It has also been used recently to study the metabolic composition of aqueous humor (AH). AH is a transparent fluid which fills the anterior and posterior chambers of the eye. It supplies nutrients and removes metabolic waste from avascular tissues in the eye. The aim of this study was to use metabolomics to compare the AH of diabetic and non-diabetic patients undergoing cataract surgery. Several antioxidants (methyltetrahydrofolic acid, taurine, niacinamide, xanthine, and uric acid) were found decreased (-22 to -61%, p-value 0.05-0.003) in AH of diabetics. Also amino acids (AA) and derivatives were found decreased (-21 to -36%, p-value 0.05-0.01) while glycosylated AA increased (+75-98%, p-value 0.03-0.009) in this group of patients. Metformin was detected in AH of people taking this drug. To our knowledge, this is the first metabolomics study aiming to assess differences in AH composition between diabetic and non-diabetic patients with cataract. An increased oxidative stress and perturbations in amino acid metabolism in AH may be responsible for earlier cataract onset in diabetic patients.
Aqueous humor (AH) is a transparent fluid which fills the anterior and posterior chambers of the eye. It supplies nutrients and removes metabolic waste from avascular tissues in the eye. Proper homeostasis of AH is required to maintain adequate intraocular pressure as well as optical and refractive properties of the eye. Application of metabolomics to study human AH may improve knowledge about the molecular mechanisms of eye diseases. Until now, global analysis of metabolites in AH has been mainly performed using NMR. Among the analytical platforms used in metabolomics, LC-MS allows for the highest metabolome coverage. The aim of this study was to develop a method for extraction and analysis of AH metabolites by LC-QTOF-MS. Different protocols for AH preparation were tested. The best results were obtained when one volume of AH was mixed with one volume of methanol : ethanol (1 : 1). In the final method, 2 µL of extracted sample was analyzed by LC-QTOF-MS. The method allowed for reproducible measurement of over 1000 metabolic features. Almost 250 metabolites were identified in AH and assigned to 47 metabolic pathways. This method is suitable to study the potential role of amino acids, lipids, oxidative stress, or microbial metabolites in development of ocular diseases.
The prospero homeobox 1 (PROX1) gene may show pleiotropic effects on metabolism. We evaluated postprandial metabolic alterations dependently on the rs340874 genotypes, and 28 non-diabetic men were divided into two groups: high-risk (HR)-genotype (CC-genotype carriers, n = 12, 35.3 ± 9.5 years old) and low-risk (LR)-genotype (allele T carriers, n = 16, 36.3 ± 7.0 years old). Subjects participated in two meal-challenge-tests with high-carbohydrate (HC, carbohydrates 89%) and normo-carbohydrate (NC, carbohydrates 45%) meal intake. Fasting and 30, 60, 120, and 180 min after meal intake plasma samples were fingerprinted by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In HR-genotype men, the area under the curve (AUC) of acetylcarnitine levels was higher after the HC-meal [+92%, variable importance in the projection (VIP) = 2.88] and the NC-meal (+55%, VIP = 2.00) intake. After the NC-meal, the HR-risk genotype carriers presented lower AUCs of oxidized fatty acids (−81–66%, VIP = 1.43–3.16) and higher linoleic acid (+80%, VIP = 2.29), while after the HC-meal, they presented lower AUCs of ornithine (−45%, VIP = 1.83), sphingosine (−48%, VIP = 2.78), linoleamide (−45%, VIP = 1.51), and several lysophospholipids (−40–56%, VIP = 1.72–2.16). Moreover, lower AUC (−59%, VIP = 2.43) of taurocholate after the HC-meal and higher (+70%, VIP = 1.42) glycodeoxycholate levels after the NC-meal were observed. Our results revealed differences in postprandial metabolites from inflammatory and oxidative stress pathways, bile acids signaling, and lipid metabolism in PROX1 HR-genotype men. Further investigations of diet–genes interactions by which PROX1 may promote T2DM development are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.