Global‐change investigations have been hindered by deficiencies in the availability and quality of land‐cover data. The U.S. Geological Survey and the University of Nebraska‐Lincoln have collaborated on the development of a new approach to land‐cover characterization that attempts to address requirements of the global‐change research community and others interested in regional patterns of land cover. An experimental 1 ‐kilometer‐resolution database of land‐cover characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land‐cover regions. The regionalization is based on a taxonomy of areas with respect to data on land cover, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land cover, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000‐scaIe map of the seasonal land‐cover regions as well as of smaller‐scale maps portraying general land cover and seasonality. The seasonal land‐cover characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global‐scale environmental modeling and assessment.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants and their associated rhizosphere microbes can promote PAH dissipation, off ering an economic and ecologically attractive remediation technique. Th is study focused on the eff ects of diff erent types of vegetation on PAH removal and on the interaction between the plants and their associated microorganisms. Aged PAH-polluted soil with a total PAH level of 753 mg kg −1 soil dry weight was planted with 18 plant species representing eight families. Th e levels of 17 soil PAHs were monitored over 14 mo. Th e size of soil microbial populations of PAH degraders was also monitored. Planting signifi cantly enhanced the dissipation rates of all PAHs within the fi rst 7 mo, but this eff ect was not signifi cant after 14 mo. Although the extent of removal of lower-molecular-weight PAHs was similar for planted and unplanted control soils after 14 mo, the total mass of fi ve-and six-ring PAHs removed was signifi cantly greater in planted soils at the 7-and 14-mo sampling points. Poaceae (grasses) were the most eff ective of the families tested, and perennial ryegrass was the most eff ective species; after 14 mo, soils planted with perennial ryegrass contained 30% of the initial total PAH concentration (compared with 51% of the initial concentrations in unplanted control soil). Although the presence of some plant species led to higher populations of PAH degraders, there was no correlation across plant species between PAH dissipation and the size of the PAH-degrading population. Research is needed to understand diff erences among plant families for stimulating PAH dissipation.
Examination of a former industrial sludge basin containing organic pollutants showed that the basin had undergone substantial ecological recovery through natural forces following the removal of surface water in 1982. Conventional phases of ecological recovery (plant invasion and succession) have occurred, but the structure of the biodiverse plant community (51 species and 22 families) was different from that at a recovering non-polluted disturbed site. Three plant species (Bermuda grass, mulberry, and sunflower) believed to be early invaders of the basin still persist in large numbers indicating that these species are well suited to cope with normal environmental stresses at this area (i.e. seasonal drought and flood) as well as organic pollutants. There was an indication that early invaders of the site fostered disappearance of contaminants thereby creating more favorable conditions for a broader spectrum of plants to grow. Vegetation analyses of naturally vegetated hazardous waste sites hold promise as a screening device for identifying plant species and management practices worthy of further phytoremediation investigations.
The natural attenuation of polyaromatic hydrocarbons (PAHs) in the vadose zone of a naturally revegetated former industrial sludge basin (0.45 ha) was examined. This was accomplished by comparing the concentration of 16 PAH contaminants present in sludge collected below the root zone of plants with contaminants present at 3 shallower depths within the root zone. Chemical analysis of 240 samples from 60 cores showed the average concentration of total and individual PAHs in the 0-30 cm, 30-60 cm, and bottom of the root zone strata were approximately 10, 20, and 50%, respectively, of the 16, 800 ppm average total PAH concentration in deep non-rooted sludge. Statistically significant differences in average PAH concentrations were observed between each strata studied and the non-rooted sludge except for the concentrations of acenaphthene and chrysene present at the bottom of the root zone in comparison to sludge values. The rooting depth of the vegetation growing in the basin was dependent on both vegetation type and plant age. Average rooting depths for trees, forbs (herbaceous non-grasses), and grasses were 90, 60, and 50 cm, respectively. The deepest root systems observed (100-120 cm) were associated with the oldest (12-14 year-old) mulberry trees. Examination of root systems and PAH concentrations at numerous locations and depths within the basin indicated that plant roots and their microbially active rhizospheres fostered PAH disappearance; including water insoluble, low volatility compounds, i.e. benzo(a)pyrene and benzo(ghi)perylene. The reduced concentration of PAHs in the upper strata of this revegetated former sludge basin indicated that natural attenuation had occurred. This observation supports the concept that through appropriate planting and management practices (phytoremediation) it will be possible to accelerate, maximize, and sustain natural processes, whereby even the most recalcitrant PAH contaminants (i.e. benzo(a)pyrene) can be remediated over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.