Ethanol (EtOH), the main psychoactive ingredient of alcoholic drinks, is widely considered to be responsible for alcohol abuse and alcoholism through its positive motivational properties, which depend, at least partially, on the activation of the mesolimbic dopaminergic system. However, acetaldehyde (ACD), the first metabolite of EtOH, has been classically considered to be aversive and useful in the pharmacological therapy of alcoholics. Here we show that EtOH-derived ACD is necessary for EtOH-induced place preference, a pre-clinical test with high predictive validity for reward liability. We also found that ACD is essential for EtOH-increased microdialysate dopamine (DA) levels in the rat nucleus accumbens and that this effect is mimicked by intra-ventral tegmental area (VTA) ACD administration. Furthermore, in vitro, ACD enhances VTA DA neuronal firing through action on two ionic currents: reduction of the A-type K+ current and activation of the hyperpolarization-activated inward current. EtOH-stimulating properties on DA neurons are prevented by pharmacological blockade of local catalase, the main metabolic step for biotransformation of EtOH into ACD in the central nervous system. These results provide in-vivo and in-vitro evidence for a key role of ACD in the motivational properties of EtOH and its activation of the mesolimbic DA system. Additionally, these observations suggest that ACD, by increasing VTA DA neuronal activity, would oppose its well-known peripherally originating aversive properties. Careful consideration of these findings could help in devising new effective pharmacological therapies aimed at reducing EtOH intake in alcoholics.
The ability of 4-MP and DP to decrease EtOH-induced cpp suggests that a reduction of ACD levels is crucial in depriving EtOH from its motivational properties as indexed by the cpp procedure. In addition, this conclusion is supported by the inefficacy of 4-MP in preventing ACD-induced cpp, and by its blockade observed after administration of the selective ACD sequestrating agent DP. The present results underscore the role of EtOH-derived ACD in EtOH-induced motivational properties as well as its abuse liability.
1 We have previously shown that manganese enhances L-dihydroxyphenylanine (L-DOPA) toxicity to PC12 cells in vitro. The supposed mechanism of manganese enhancing eect [an increase in L-DOPA and dopamine (DA) auto-oxidation] was studied using microdialysis in the striatum of freely moving rats. 2 Systemic L-DOPA [25 mg kg 71 intraperitoneally (i.p.) twice in a 12 h interval] signi®cantly increased baseline dialysate concentrations of L-DOPA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and uric acid, compared to controls. Conversely, DA and ascorbic acid concentrations were signi®cantly decreased. 3 A L-DOPA oxidation product, presumptively identi®ed as L-DOPA semiquinone, was detected in the dialysate. The L-DOPA semiquinone was detected also following intrastriatal infusion of L-DOPA. 4 In rats given L-DOPA i.p., intrastriatal infusion of N-acetylcysteine (NAC) signi®cantly increased DA and L-DOPA dialysate concentrations and lowered those of L-DOPA semiquinone; in addition, NAC decreased DOPAC+HVA and uric acid dialysate concentrations. 5 In rats given L-DOPA either systemically or intrastriatally, intrastriatal infusion of manganese decreased L-DOPA dialysate concentrations and greatly increased those of L-DOPA semiquinone. These changes were inhibited by NAC infusion. 6 These ®ndings demonstrate that auto-oxidation of exogenous L-DOPA occurs in vivo in the rat striatum. The consequent reactive oxygen species generation may account for the decrease in dialysate DA and ascorbic acid concentrations and increase in enzymatic oxidation of xanthine and DA. L-DOPA auto-oxidation is inhibited by NAC and enhanced by manganese. These results may be of relevance to the L-DOPA long-term therapy of Parkinson's disease. British Journal of Pharmacology (2000) 130, 937 ± 945
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.