MicroRNAs (miRNAs) are non-coding RNA transcripts that regulate physiological processes by targeting proteins directly. Their involvement in research has been robust, and evidence of their regulative functions has granted them the title: master regulators of the human genome. In cancer, they have been considered important therapeutic agents, due to the fact that their aberrant expression contributes to disease development, progression, metastasis, therapeutic response and patient overall survival. This has endeavored fields of biomedical sciences to invest in developing and exploiting miRNA-based therapeutics thoroughly. Herein we highlight relevant ongoing/open clinical trials involving miRNAs and cancer.
Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC.
Pathology training programs throughout the United States have endured unprecedented challenges dealing with the ongoing coronavirus disease 2019 pandemic. At Houston Methodist Hospital, the Department of Pathology and Genomic Medicine planned and executed a trainee-oriented, stepwise emergency response. The focus was on optimizing workflows among areas of both clinical and anatomic pathology, maintaining an excellent educational experience, and minimizing trainee exposure to coronavirus disease 2019. During the first phase of the response, trainees were divided into 2 groups: one working on-site and the other working remotely. With the progression of the pandemic, all trainees were called back on-site and further redeployed within our department to meet the significantly increased workload demands of our clinical laboratory services. Adjustments to trainee educational activities included, among others, the organization of a daily coronavirus disease 2019 virtual seminar series. This series served to facilitate communication between faculty, laboratory managers, and trainees. Moreover, it became a forum for trainees to provide updates on individual service workflows and volumes, ongoing projects and research, as well as literature reviews on coronavirus disease 2019–related topics. From our program’s experience, redeploying pathology trainees within our department during the coronavirus disease 2019 pandemic resulted in optimization of patient care while ensuring trainee safety, and importantly, helped to maintain continuous high-quality education through active involvement in unique learning opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.