Major microorganisms in biofilms on external surfaces of historic buildings are algae, cyanobacteria, bacteria, and fungi. Their growth causes discoloration and degradation. We compared the phototrophs on cement-based renderings and limestone substrates at 14 historic locations (47 sites sampled) in Europe and Latin America. Most biofilms contained both cyanobacteria and algae. Single-celled and colonial cyanobacteria frequently constituted the major phototroph biomass on limestone monuments (32 sites sampled). Greater numbers of phototrophs, and especially of algae and of filamentous morphotypes, were found on cement-based renderings (15 sites), probably owing to the porosity and small pore size of the latter substrates, allowing greater entry and retention of water. All phototrophic groups were more frequent on Latin American than on European buildings (20 and 27 sites, respectively), with cyanobacteria and filamentous phototrophs showing the greatest differences. The results confirm the influence of both climate and substrate on phototroph colonization of historic buildings.
Buildings at the important archaeological sites of Uxmal and Kabah, Mexico, are being degraded by microbial biofilms. Phospholipid fatty acid (PLFA) and chlorophyll a analyses indicated that phototrophs were the major epilithic microorganisms and were more prevalent on interior walls than exterior walls. Culture and microscopical techniques showed that Xenococcus formed the major biomass on interior surfaces, but the stone-degrading genera Gloeocapsa and Synechocystis were also present in high numbers. Relatively few filamentous algae and cyanobacteria were detected. The fatty acid analysis also showed that complex biofilms colonize these buildings. Circular depressions observed by scanning electron microscopy (SEM) on stone and stucco surfaces beneath the biofilm corresponded in shape and size to coccoid cyanobacteria. SEM images also demonstrated the presence of calcareous deposits on some coccoid cells in the biofilm. Phototrophic biofilms may contribute to biodegradation by (1) providing nutrients that support growth of acid-producing fungi and bacteria and (2) active "boring" behavior, the solubilized calcium being reprecipitated as calcium carbonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.